[VLM][Core] Fix exceptions on ragged NestedTensors (#7974)

This commit is contained in:
Peter Salas
2024-08-28 20:24:31 -07:00
committed by GitHub
parent a7f65c2be9
commit 74d5543ec5
3 changed files with 21 additions and 11 deletions

View File

@ -81,3 +81,15 @@ def test_multimodal_input_batch_multiple_batchable_lists():
result,
{"image": torch.stack([torch.stack([a, b]),
torch.stack([c, d])])})
def test_multimodal_input_batch_mixed_stacking_depths():
a = torch.rand([1, 2, 3])
b = torch.rand([1, 3, 3])
c = torch.rand([1, 4, 3])
result = MultiModalInputs.batch([{"image": [a, b]}, {"image": [c]}])
assert_multimodal_inputs_equal(result, {"image": [[a, b], c.unsqueeze(0)]})
result = MultiModalInputs.batch([{"image": [a]}, {"image": [b, c]}])
assert_multimodal_inputs_equal(result, {"image": [a.unsqueeze(0), [b, c]]})

View File

@ -1,7 +1,6 @@
from typing import (Dict, Iterable, List, Literal, Optional, Protocol, Tuple,
Union, overload)
import numpy as np
import torch
import torch.nn as nn
from torch.func import functional_call
@ -96,12 +95,13 @@ def flatten_bn(
def _flatten_embeddings(embeddings: NestedTensors) -> torch.Tensor:
"""
Recursively concatenates NestedTensors along any heterogeneously sized
dimensions.
Recursively flattens and concatenates NestedTensors on all but the last
dimension.
"""
if isinstance(embeddings, torch.Tensor):
return embeddings
# Flatten all but the last dimension.
return embeddings.flatten(0, -2)
return torch.cat(tuple(_flatten_embeddings(t) for t in embeddings))
@ -136,15 +136,13 @@ def merge_multimodal_embeddings(input_ids: torch.Tensor,
assert isinstance(num_expected_tokens, int)
flattened = _flatten_embeddings(multimodal_embeddings)
*dims, embed_dim = flattened.shape
num_multimodal_embeddings = np.prod(dims)
if num_multimodal_embeddings != num_expected_tokens:
if flattened.shape[0] != num_expected_tokens:
expr = _embedding_count_expression(multimodal_embeddings)
raise ValueError(
f"Attempted to assign {expr} = {num_multimodal_embeddings} "
f"Attempted to assign {expr} = {flattened.shape[0]} "
f"multimodal tokens to {num_expected_tokens} placeholders")
inputs_embeds[mask] = flattened.view(num_expected_tokens, embed_dim)
inputs_embeds[mask] = flattened
return inputs_embeds

View File

@ -54,8 +54,8 @@ class MultiModalInputs(_MultiModalInputsBase):
return nested_tensors
stacked = [MultiModalInputs._try_stack(t) for t in nested_tensors]
if is_list_of(stacked, list):
# Do not stack nested lists
if not is_list_of(stacked, torch.Tensor, check="all"):
# Only tensors (not lists) can be stacked.
return stacked
tensors_ = cast(List[torch.Tensor], stacked)