[Model] Compute Llava Next Max Tokens / Dummy Data From Gridpoints (#9650)

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
This commit is contained in:
Alex Brooks
2024-10-24 11:42:24 -06:00
committed by GitHub
parent c866e0079d
commit 722d46edb9
2 changed files with 93 additions and 14 deletions

View File

@ -3,12 +3,13 @@ from typing import List, Optional, Tuple, Type, overload
import pytest
from transformers import AutoConfig, AutoModelForVision2Seq, AutoTokenizer
from vllm.inputs import InputContext
from vllm.multimodal.utils import rescale_image_size
from vllm.sequence import SampleLogprobs
from ....conftest import (IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner,
_ImageAssets)
from ...utils import check_logprobs_close
from ...utils import build_model_context, check_logprobs_close
_LIMIT_IMAGE_PER_PROMPT = 4
@ -22,6 +23,19 @@ HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
models = ["llava-hf/llava-v1.6-mistral-7b-hf"]
@pytest.fixture()
def get_max_llava_next_image_tokens():
from vllm.model_executor.models.llava_next import (
get_max_llava_next_image_tokens)
return get_max_llava_next_image_tokens
@pytest.fixture()
def dummy_data_for_llava_next():
from vllm.model_executor.models.llava_next import dummy_data_for_llava_next
return dummy_data_for_llava_next
def vllm_to_hf_output(vllm_output: Tuple[List[int], str,
Optional[SampleLogprobs]],
model: str):
@ -281,3 +295,53 @@ def test_models_multiple_image_inputs(hf_runner, vllm_runner, image_assets,
num_logprobs=num_logprobs,
tensor_parallel_size=1,
)
@pytest.mark.parametrize("gridpoints,expected_max_tokens", [
([[336, 336]], 1176),
([[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]], 2928),
])
def test_get_max_llava_next_image_tokens(gridpoints, expected_max_tokens,
get_max_llava_next_image_tokens):
ctx = build_model_context(model_name="llava-hf/llava-v1.6-mistral-7b-hf")
# Update the config image_grid_pinpoints
# and calculate the resulting max tokens
ctx.model_config.hf_config.image_grid_pinpoints = gridpoints
actual_max_tokens = get_max_llava_next_image_tokens(
InputContext(ctx.model_config))
assert expected_max_tokens == actual_max_tokens
@pytest.mark.parametrize(
"gridpoints,expected_size",
[
# One point; it has to be the largest
([[336, 336]], (336, 336)),
# Default for most llava next models; the 2x2 tile is the largest
([[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]],
(672, 672)),
# If two rectangular gridpoints are the same, the more vertical
# one has the higher feature count due to newline features
([[336, 672], [672, 336]], (672, 336))
])
def test_dummy_data_for_llava_next_feature_size(dummy_data_for_llava_next,
gridpoints, expected_size):
ctx = build_model_context(model_name="llava-hf/llava-v1.6-mistral-7b-hf")
# Update the config image_grid_pinpoints
ctx.model_config.hf_config.image_grid_pinpoints = gridpoints
seq_len = 5000 # bigger than the max feature size for any image
seq_data, mm_data = dummy_data_for_llava_next(
ctx,
seq_len=seq_len,
mm_counts={"image": 1},
)
# The dummy data dims should match the gridpoint with the biggest feat size
assert mm_data["image"].height == expected_size[0]
assert mm_data["image"].width == expected_size[1]
assert len(seq_data.get_token_ids()) >= seq_len

View File

@ -33,9 +33,6 @@ from .siglip import (SiglipVisionModel, dummy_image_for_siglip,
from .utils import (AutoWeightsLoader, embed_multimodal, flatten_bn,
init_vllm_registered_model)
# Result in the max possible feature size (2x2 grid of 336x336px tiles)
MAX_IMAGE_FEATURE_SIZE_HEIGHT = MAX_IMAGE_FEATURE_SIZE_WIDTH = 448
class LlavaNextImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
@ -149,11 +146,28 @@ def get_llava_next_image_feature_size(
def get_max_llava_next_image_tokens(ctx: InputContext):
return get_llava_next_image_feature_size(
ctx.get_hf_config(LlavaNextConfig),
input_height=MAX_IMAGE_FEATURE_SIZE_HEIGHT,
input_width=MAX_IMAGE_FEATURE_SIZE_WIDTH,
)
"""Compute the max feature size for all possible image grid pinpoints."""
return _get_pinpoint_with_largest_features(ctx)[0]
def _get_pinpoint_with_largest_features(
ctx: InputContext) -> Tuple[int, Tuple[int, int]]:
"""Get the grid pinpoint with the largest features & its feature size."""
hf_config = ctx.get_hf_config(LlavaNextConfig)
largest_feature_size = 0
largest_feature_pinpoint = None
for (height, width) in hf_config.image_grid_pinpoints:
feat_size = get_llava_next_image_feature_size(
hf_config,
input_height=height,
input_width=width,
)
if feat_size > largest_feature_size:
largest_feature_size = feat_size
largest_feature_pinpoint = (height, width)
if not largest_feature_size or largest_feature_pinpoint is None:
raise ValueError("Cannot have a largest feature size of 0!")
return largest_feature_size, largest_feature_pinpoint
def dummy_data_for_llava_next(ctx: InputContext, seq_len: int,
@ -162,7 +176,8 @@ def dummy_data_for_llava_next(ctx: InputContext, seq_len: int,
vision_config = hf_config.vision_config
num_images = mm_counts["image"]
image_feature_size = get_max_llava_next_image_tokens(ctx)
image_feature_size, pinpoint = _get_pinpoint_with_largest_features(ctx)
max_feat_height, max_feat_width = pinpoint
if isinstance(vision_config, CLIPVisionConfig):
seq_data = dummy_seq_data_for_clip(
@ -176,8 +191,8 @@ def dummy_data_for_llava_next(ctx: InputContext, seq_len: int,
mm_data = dummy_image_for_clip(
vision_config,
num_images,
image_width_override=MAX_IMAGE_FEATURE_SIZE_WIDTH,
image_height_override=MAX_IMAGE_FEATURE_SIZE_HEIGHT,
image_width_override=max_feat_width,
image_height_override=max_feat_height,
)
return seq_data, mm_data
@ -193,8 +208,8 @@ def dummy_data_for_llava_next(ctx: InputContext, seq_len: int,
mm_data = dummy_image_for_siglip(
vision_config,
num_images,
image_width_override=MAX_IMAGE_FEATURE_SIZE_WIDTH,
image_height_override=MAX_IMAGE_FEATURE_SIZE_HEIGHT,
image_width_override=max_feat_width,
image_height_override=max_feat_height,
)
return seq_data, mm_data