mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Perf]:Optimize qwen2-vl to reduce cudaMemcpyAsync (#14377)
Signed-off-by: cynthieye <987073381@qq.com>
This commit is contained in:
@ -255,10 +255,12 @@ class Qwen2_5_VisionAttention(nn.Module):
|
||||
return q, k, v
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
rotary_pos_emb: torch.Tensor,
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
rotary_pos_emb: torch.Tensor,
|
||||
max_seqlen: Optional[int] = None, # Only used for Flash Attention
|
||||
seqlens: Optional[list[int]] = None, # Only used for xFormers
|
||||
) -> torch.Tensor:
|
||||
# [s, b, c] --> [s, b, head * 3 * head_dim]
|
||||
x, _ = self.qkv(x)
|
||||
@ -285,7 +287,6 @@ class Qwen2_5_VisionAttention(nn.Module):
|
||||
|
||||
q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
|
||||
|
||||
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
||||
output = flash_attn_varlen_func(q,
|
||||
k,
|
||||
v,
|
||||
@ -321,7 +322,6 @@ class Qwen2_5_VisionAttention(nn.Module):
|
||||
from xformers import ops as xops
|
||||
from xformers.ops.fmha.attn_bias import BlockDiagonalMask
|
||||
|
||||
seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
|
||||
attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
|
||||
kv_seqlen=None,
|
||||
device=q.device)
|
||||
@ -364,11 +364,20 @@ class Qwen2_5_VisionBlock(nn.Module):
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp")
|
||||
|
||||
def forward(self, x: torch.Tensor, cu_seqlens: torch.Tensor,
|
||||
rotary_pos_emb: torch.Tensor) -> torch.Tensor:
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
rotary_pos_emb: torch.Tensor,
|
||||
max_seqlen: Optional[int] = None, # Only used for Flash Attention
|
||||
seqlens: Optional[list[int]] = None, # Only used for xFormers
|
||||
) -> torch.Tensor:
|
||||
x = x + self.attn(self.norm1(x),
|
||||
cu_seqlens=cu_seqlens,
|
||||
rotary_pos_emb=rotary_pos_emb)
|
||||
rotary_pos_emb=rotary_pos_emb,
|
||||
max_seqlen=max_seqlen,
|
||||
seqlens=seqlens)
|
||||
|
||||
x = x + self.mlp(self.norm2(x))
|
||||
return x
|
||||
|
||||
@ -528,6 +537,7 @@ class Qwen2_5_VisionTransformer(nn.Module):
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.merger",
|
||||
)
|
||||
self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
|
||||
|
||||
@property
|
||||
def dtype(self) -> torch.dtype:
|
||||
@ -633,14 +643,25 @@ class Qwen2_5_VisionTransformer(nn.Module):
|
||||
|
||||
# transformers
|
||||
hidden_states = hidden_states.unsqueeze(1)
|
||||
|
||||
max_seqlen = None
|
||||
seqlens = None
|
||||
if self.attn_backend == _Backend.FLASH_ATTN:
|
||||
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
||||
elif self.attn_backend == _Backend.XFORMERS:
|
||||
seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
|
||||
for layer_num, blk in enumerate(self.blocks):
|
||||
if layer_num in self.fullatt_block_indexes:
|
||||
cu_seqlens_now = cu_seqlens
|
||||
else:
|
||||
cu_seqlens_now = cu_window_seqlens
|
||||
hidden_states = blk(hidden_states,
|
||||
cu_seqlens=cu_seqlens_now,
|
||||
rotary_pos_emb=rotary_pos_emb)
|
||||
hidden_states = blk(
|
||||
hidden_states,
|
||||
cu_seqlens=cu_seqlens_now,
|
||||
rotary_pos_emb=rotary_pos_emb,
|
||||
max_seqlen=max_seqlen,
|
||||
seqlens=seqlens,
|
||||
)
|
||||
|
||||
# For Qwen2.5-VL-3B, float16 will overflow at last block
|
||||
# for long visual tokens sequences.
|
||||
|
@ -303,10 +303,12 @@ class Qwen2VisionAttention(nn.Module):
|
||||
return q, k, v
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
rotary_pos_emb: torch.Tensor,
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
rotary_pos_emb: torch.Tensor,
|
||||
max_seqlen: Optional[int] = None, # Only used for Flash Attention
|
||||
seqlens: Optional[list[int]] = None, # Only used for xFormers
|
||||
) -> torch.Tensor:
|
||||
|
||||
# [s, b, c] --> [s, b, 3 * head * head_dim]
|
||||
@ -329,7 +331,6 @@ class Qwen2VisionAttention(nn.Module):
|
||||
|
||||
q, k, v = (rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v])
|
||||
|
||||
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
||||
output = flash_attn_varlen_func(q,
|
||||
k,
|
||||
v,
|
||||
@ -365,7 +366,6 @@ class Qwen2VisionAttention(nn.Module):
|
||||
from xformers import ops as xops
|
||||
from xformers.ops.fmha.attn_bias import BlockDiagonalMask
|
||||
|
||||
seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
|
||||
attn_bias = BlockDiagonalMask.from_seqlens(q_seqlen=seqlens,
|
||||
kv_seqlen=None,
|
||||
device=q.device)
|
||||
@ -409,11 +409,22 @@ class Qwen2VisionBlock(nn.Module):
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp")
|
||||
|
||||
def forward(self, x: torch.Tensor, cu_seqlens: torch.Tensor,
|
||||
rotary_pos_emb: torch.Tensor) -> torch.Tensor:
|
||||
x = x + self.attn(self.norm1(x),
|
||||
cu_seqlens=cu_seqlens,
|
||||
rotary_pos_emb=rotary_pos_emb)
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
rotary_pos_emb: torch.Tensor,
|
||||
max_seqlen: Optional[int] = None, # Only used for Flash Attention
|
||||
seqlens: Optional[list[int]] = None, # Only used for xFormers
|
||||
) -> torch.Tensor:
|
||||
x = x + self.attn(
|
||||
self.norm1(x),
|
||||
cu_seqlens=cu_seqlens,
|
||||
rotary_pos_emb=rotary_pos_emb,
|
||||
max_seqlen=max_seqlen,
|
||||
seqlens=seqlens,
|
||||
)
|
||||
|
||||
x = x + self.mlp(self.norm2(x))
|
||||
return x
|
||||
|
||||
@ -570,6 +581,7 @@ class Qwen2VisionTransformer(nn.Module):
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.merger",
|
||||
)
|
||||
self.attn_backend: _Backend = get_vit_attn_backend(support_fa=True)
|
||||
|
||||
@property
|
||||
def dtype(self) -> torch.dtype:
|
||||
@ -624,8 +636,21 @@ class Qwen2VisionTransformer(nn.Module):
|
||||
|
||||
# transformers
|
||||
x = x.unsqueeze(1)
|
||||
|
||||
max_seqlen = None
|
||||
seqlens = None
|
||||
if self.attn_backend == _Backend.FLASH_ATTN:
|
||||
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
||||
elif self.attn_backend == _Backend.XFORMERS:
|
||||
seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
|
||||
for blk in self.blocks:
|
||||
x = blk(x, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
|
||||
x = blk(
|
||||
x,
|
||||
cu_seqlens=cu_seqlens,
|
||||
rotary_pos_emb=rotary_pos_emb,
|
||||
max_seqlen=max_seqlen,
|
||||
seqlens=seqlens,
|
||||
)
|
||||
|
||||
# adapter
|
||||
x = self.merger(x)
|
||||
|
Reference in New Issue
Block a user