[Frontend] Added support for HermesToolParser for models without special tokens (#16890)

Signed-off-by: minpeter <kali2005611@gmail.com>
This commit is contained in:
Woonggi Min
2025-08-17 02:38:42 +09:00
committed by GitHub
parent 52ce1420e9
commit 68373d3126
2 changed files with 191 additions and 17 deletions

View File

@ -0,0 +1,127 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import pytest
from ....utils import RemoteOpenAIServer
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct"
LORA_MODEL = "minpeter/LoRA-Llama-3.2-1B-tool-vllm-ci"
SERVER_ARGS = [
"--enforce-eager",
"--enable-auto-tool-choice",
"--tool-call-parser",
"hermes",
"--enable-lora",
"--lora-modules",
f"{LORA_MODEL}={LORA_MODEL}",
]
TOOLS = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description":
"The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
},
},
"required": ["location"],
},
},
}]
MESSAGES = [{"role": "user", "content": "What's the weather like in Boston?"}]
@pytest.mark.asyncio
async def test_non_streaming_tool_call():
"""Test tool call in non-streaming mode."""
with RemoteOpenAIServer(MODEL_NAME, SERVER_ARGS) as server:
client = server.get_async_client()
response = await client.chat.completions.create(
model=LORA_MODEL,
messages=MESSAGES,
tools=TOOLS,
tool_choice="auto",
temperature=0.0,
)
assert response.choices
choice = response.choices[0]
message = choice.message
assert choice.finish_reason == "tool_calls"
assert message.tool_calls is not None
tool_call = message.tool_calls[0]
assert tool_call.type == "function"
assert tool_call.function.name == "get_current_weather"
arguments = json.loads(tool_call.function.arguments)
assert "location" in arguments
assert "Boston" in arguments["location"]
print("\n[Non-Streaming Test Passed]")
print(f"Tool Call: {tool_call.function.name}")
print(f"Arguments: {arguments}")
@pytest.mark.asyncio
async def test_streaming_tool_call():
"""Test tool call in streaming mode."""
with RemoteOpenAIServer(MODEL_NAME, SERVER_ARGS) as server:
client = server.get_async_client()
stream = await client.chat.completions.create(
model=LORA_MODEL,
messages=MESSAGES,
tools=TOOLS,
tool_choice="auto",
temperature=0.0,
stream=True,
)
tool_call_chunks = {}
async for chunk in stream:
if not chunk.choices:
continue
delta = chunk.choices[0].delta
if not delta or not delta.tool_calls:
continue
for tool_chunk in delta.tool_calls:
index = tool_chunk.index
if index not in tool_call_chunks:
tool_call_chunks[index] = {"name": "", "arguments": ""}
if tool_chunk.function.name:
tool_call_chunks[index]["name"] += tool_chunk.function.name
if tool_chunk.function.arguments:
tool_call_chunks[index][
"arguments"] += tool_chunk.function.arguments
assert len(tool_call_chunks) == 1
reconstructed_tool_call = tool_call_chunks[0]
assert reconstructed_tool_call["name"] == "get_current_weather"
arguments = json.loads(reconstructed_tool_call["arguments"])
assert "location" in arguments
assert "Boston" in arguments["location"]
print("\n[Streaming Test Passed]")
print(f"Reconstructed Tool Call: {reconstructed_tool_call['name']}")
print(f"Reconstructed Arguments: {arguments}")

View File

@ -52,14 +52,51 @@ class Hermes2ProToolParser(ToolParser):
raise ValueError(
"The model tokenizer must be passed to the ToolParser "
"constructor during construction.")
self.tool_call_start_token_id = self.vocab.get(
self.tool_call_start_token)
self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)
if (self.tool_call_start_token_id is None
or self.tool_call_end_token_id is None):
raise RuntimeError(
"Hermes 2 Pro Tool parser could not locate tool call start/end "
"tokens in the tokenizer!")
self.tool_call_start_token_ids = self.model_tokenizer.encode(
self.tool_call_start_token, add_special_tokens=False)
self.tool_call_end_token_ids = self.model_tokenizer.encode(
self.tool_call_end_token, add_special_tokens=False)
self.tool_call_start_token_array = [
self.model_tokenizer.decode([token_id])
for token_id in self.tool_call_start_token_ids
]
self.tool_call_end_token_array = [
self.model_tokenizer.decode([token_id])
for token_id in self.tool_call_end_token_ids
]
self.buffered_delta_text = ""
# Very simple idea: when encountering tokens like <, tool, _call, >,
# <, /, tool, _call, >, store them in a buffer.
# When the last token is encountered, empty the buffer and return it.
# If a token appears in an incorrect sequence while storing in the buffer,
# return the preceding buffer along with the token.
def tool_call_delta_buffer(self, delta_text: str):
# If the sequence of tool_call_start or tool_call_end tokens is not yet
# complete, fill the buffer with the token and return "".
if (delta_text in self.tool_call_start_token_array
or delta_text in self.tool_call_end_token_array):
# If delta_text is the last token of tool_call_start_token or
# tool_call_end_token, empty the buffer and return
# the buffered text + delta_text.
if (delta_text == self.tool_call_start_token_array[-1]
or delta_text == self.tool_call_end_token_array[-1]):
buffered_text = self.buffered_delta_text
self.buffered_delta_text = ""
return buffered_text + delta_text
else:
self.buffered_delta_text = self.buffered_delta_text + delta_text
return ""
else:
if self.buffered_delta_text:
buffered_text = self.buffered_delta_text
self.buffered_delta_text = ""
return buffered_text + delta_text
else:
return delta_text
def extract_tool_calls(
self,
@ -124,11 +161,23 @@ class Hermes2ProToolParser(ToolParser):
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
# 1. All tokens are parsed based on _text, not token_ids.
# 2. All incoming text data is processed by the tool_call_delta_buffer
# function for buffering before being used for parsing.
delta_text = self.tool_call_delta_buffer(delta_text)
# If the last characters of previous_text
# match self.buffered_delta_text, remove only the matching part.
if (len(previous_text) >= len(self.buffered_delta_text)
and previous_text[-len(self.buffered_delta_text):]
== self.buffered_delta_text):
previous_text = previous_text[:-len(self.buffered_delta_text)]
current_text = previous_text + delta_text
logger.debug("delta_text: %s", delta_text)
logger.debug("delta_token_ids: %s", delta_token_ids)
# check to see if we should be streaming a tool call - is there a
if self.tool_call_start_token_id not in current_token_ids:
if self.tool_call_start_token not in current_text:
logger.debug("No tool call tokens found!")
return DeltaMessage(content=delta_text)
@ -136,14 +185,12 @@ class Hermes2ProToolParser(ToolParser):
# figure out where we are in the parsing by counting tool call
# start & end tags
prev_tool_start_count = previous_token_ids.count(
self.tool_call_start_token_id)
prev_tool_end_count = previous_token_ids.count(
self.tool_call_end_token_id)
cur_tool_start_count = current_token_ids.count(
self.tool_call_start_token_id)
cur_tool_end_count = current_token_ids.count(
self.tool_call_end_token_id)
prev_tool_start_count = previous_text.count(
self.tool_call_start_token)
prev_tool_end_count = previous_text.count(self.tool_call_end_token)
cur_tool_start_count = current_text.count(
self.tool_call_start_token)
cur_tool_end_count = current_text.count(self.tool_call_end_token)
tool_call_portion = None
text_portion = None