[Bugfix] bugfix and add model test for flashinfer fp8 kv cache. (#8013)

This commit is contained in:
Pavani Majety
2024-08-30 22:18:50 -07:00
committed by GitHub
parent 1248e8506a
commit 622f8abff8
2 changed files with 109 additions and 5 deletions

View File

@ -0,0 +1,96 @@
# flake8: noqa
"""Tests fp8 models against ground truth generation
This verifies the flashinfer backend with fp8
quantization and fp8 KV Cache without scaling
factors Note: these tests will only pass on H100 GPU.
"""
import os
from typing import List
import pytest
from transformers import AutoTokenizer
from tests.quantization.utils import is_quant_method_supported
from vllm import LLM, SamplingParams
os.environ["TOKENIZERS_PARALLELISM"] = "true"
MAX_MODEL_LEN = 1024
MODELS = [
"nm-testing/Meta-Llama-3-8B-Instruct-FP8",
]
EXPECTED_STRS_MAP = {
"nm-testing/Meta-Llama-3-8B-Instruct-FP8": {
"auto": [
'LLaMA is a high-throughput and memory-efficient inference and serving engine for Large Language Models (',
'Here are the major milestones in the development of artificial intelligence (AI) from 1950 to ',
'Artificial intelligence (AI) and human intelligence (HI) differ significantly in how they process information.',
'A neural network is a complex system modeled after the human brain, consisting of interconnected nodes or "ne',
'In the sterile, metallic halls of the robotics lab, a peculiar phenomenon occurred. Zeta-5',
'The COVID-19 pandemic has had a profound impact on global economic structures and future business models. The',
'The Mona Lisa, painted by Leonardo da Vinci in the early 16th century, is one of',
'Here are the translations:\n\n**Japanese:** (Haya aki no tori, mushi o',
],
"fp8": [
'LLM (Large Language Model) is a type of artificial intelligence (AI) model that is trained',
'Here are the major milestones in the development of artificial intelligence (AI) from 1950 to ',
'Artificial intelligence (AI) and human intelligence (HI) differ significantly in how they process information.',
'A neural network is a complex system modeled after the human brain, composed of interconnected nodes or "ne',
'Zeta-5, a highly advanced robot designed for menial labor, whirred and beep',
'The COVID-19 pandemic has had a profound impact on global economic structures and future business models. Here',
'The Mona Lisa, painted by Leonardo da Vinci in the early 16th century, is one of',
'Here are the translations:\n\n**Japanese:** (Haya aki no tori, guri o',
]
}
}
# This test compares against golden strings for exact match since
# there is no baseline implementation to compare against
# and is unstable w.r.t specifics of the fp8 implementation or
# the hardware being run on.
# No assert to prevent it from breaking the build
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
reason="fp8 is not supported on this GPU type.")
@pytest.mark.parametrize("model_name", MODELS)
@pytest.mark.parametrize("kv_cache_dtype", ["auto", "fp8"])
@pytest.mark.parametrize("backend", ["XFORMERS", "FLASHINFER"])
def test_models(example_prompts, model_name, kv_cache_dtype, backend) -> None:
# Note that the golden strings may not work for FLASHINFER Backend.
# The intention is to test the path
os.environ["VLLM_ATTENTION_BACKEND"] = backend
model = LLM(model=model_name,
max_model_len=MAX_MODEL_LEN,
trust_remote_code=True,
quantization="fp8",
kv_cache_dtype=kv_cache_dtype)
tokenizer = AutoTokenizer.from_pretrained(model_name)
formatted_prompts = [
tokenizer.apply_chat_template([{
"role": "user",
"content": prompt
}],
tokenize=False,
add_generation_prompt=True)
for prompt in example_prompts
]
params = SamplingParams(max_tokens=20, temperature=0)
generations: List[str] = []
# Note: these need to be run 1 at a time due to numerical precision,
# since the expected strs were generated this way.
for prompt in formatted_prompts:
outputs = model.generate(prompt, params)
generations.append(outputs[0].outputs[0].text)
del model
print(f"Testing: {model_name} with kv_cache_dtype: {kv_cache_dtype}")
expected_strs = EXPECTED_STRS_MAP[model_name][kv_cache_dtype]
for i in range(len(example_prompts)):
generated_str = generations[i]
expected_str = expected_strs[i]
print(f"generated_str\n: {generated_str}")
print(f"expected_str\n: {expected_str}")

View File

@ -186,9 +186,13 @@ class FlashInferState(AttentionState):
self._graph_decode_workspace_buffer, _indptr_buffer,
self._graph_indices_buffer, _last_page_len_buffer, "NHD",
use_tensor_cores)
if self.runner.kv_cache_dtype.startswith("fp8"):
kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
self.runner.kv_cache_dtype)
else:
kv_cache_dtype = get_kv_cache_torch_dtype(
self.runner.kv_cache_dtype, self.runner.model_config.dtype)
kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
self.runner.kv_cache_dtype)
paged_kv_indptr_tensor_host = torch.arange(0,
batch_size + 1,
dtype=torch.int32)
@ -349,7 +353,7 @@ class FlashInferMetadata(AttentionMetadata):
self.page_size,
# Disable flashinfer's pos encoding and use vllm's rope.
pos_encoding_mode="NONE",
)
data_type=self.data_type)
def asdict_zerocopy(self,
skip_fields: Optional[Set[str]] = None
@ -586,8 +590,12 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
paged_kv_indptr_tensor = None
paged_kv_last_page_len_tensor = None
kv_cache_dtype = get_kv_cache_torch_dtype(
self.runner.kv_cache_dtype, self.runner.model_config.dtype)
if self.runner.kv_cache_dtype.startswith("fp8"):
kv_cache_dtype = FlashInferBackend.get_fp8_dtype_for_flashinfer(
self.runner.kv_cache_dtype)
else:
kv_cache_dtype = get_kv_cache_torch_dtype(
self.runner.kv_cache_dtype, self.runner.model_config.dtype)
return FlashInferMetadata(
num_prefills=self.num_prefills,