mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Misc] Better RayExecutor and multiprocessing compatibility (#14705)
Signed-off-by: Cody Yu <hao.yu.cody@gmail.com>
This commit is contained in:
@ -26,7 +26,7 @@ from vllm.plugins import load_general_plugins
|
||||
from vllm.test_utils import MODEL_WEIGHTS_S3_BUCKET, MODELS_ON_S3
|
||||
from vllm.transformers_utils.utils import check_gguf_file
|
||||
from vllm.usage.usage_lib import UsageContext
|
||||
from vllm.utils import FlexibleArgumentParser, StoreBoolean
|
||||
from vllm.utils import FlexibleArgumentParser, StoreBoolean, is_in_ray_actor
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.transformers_utils.tokenizer_group import BaseTokenizerGroup
|
||||
@ -1245,6 +1245,18 @@ class EngineArgs:
|
||||
cpu_offload_gb=self.cpu_offload_gb,
|
||||
calculate_kv_scales=self.calculate_kv_scales,
|
||||
)
|
||||
|
||||
# Get the current placement group if Ray is initialized and
|
||||
# we are in a Ray actor. If so, then the placement group will be
|
||||
# passed to spawned processes.
|
||||
placement_group = None
|
||||
if is_in_ray_actor():
|
||||
import ray
|
||||
|
||||
# This call initializes Ray automatically if it is not initialized,
|
||||
# but we should not do this here.
|
||||
placement_group = ray.util.get_current_placement_group()
|
||||
|
||||
parallel_config = ParallelConfig(
|
||||
pipeline_parallel_size=self.pipeline_parallel_size,
|
||||
tensor_parallel_size=self.tensor_parallel_size,
|
||||
@ -1257,6 +1269,7 @@ class EngineArgs:
|
||||
self.tokenizer_pool_extra_config,
|
||||
),
|
||||
ray_workers_use_nsight=self.ray_workers_use_nsight,
|
||||
placement_group=placement_group,
|
||||
distributed_executor_backend=self.distributed_executor_backend,
|
||||
worker_cls=self.worker_cls,
|
||||
worker_extension_cls=self.worker_extension_cls,
|
||||
|
@ -16,7 +16,7 @@ import torch
|
||||
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils import _check_multiproc_method, get_mp_context, run_method
|
||||
from vllm.utils import _maybe_force_spawn, get_mp_context, run_method
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
@ -291,7 +291,7 @@ def set_multiprocessing_worker_envs(parallel_config):
|
||||
in a multiprocessing environment. This should be called by the parent
|
||||
process before worker processes are created"""
|
||||
|
||||
_check_multiproc_method()
|
||||
_maybe_force_spawn()
|
||||
|
||||
# Configure thread parallelism if OMP_NUM_THREADS isn't set
|
||||
#
|
||||
|
@ -284,8 +284,9 @@ def initialize_ray_cluster(
|
||||
assert_ray_available()
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
# Connect to a ray cluster.
|
||||
if current_platform.is_rocm() or current_platform.is_xpu():
|
||||
if ray.is_initialized():
|
||||
logger.info("Ray is already initialized. Skipping Ray initialization.")
|
||||
elif current_platform.is_rocm() or current_platform.is_xpu():
|
||||
# Try to connect existing ray instance and create a new one if not found
|
||||
try:
|
||||
ray.init("auto", ignore_reinit_error=True)
|
||||
@ -299,19 +300,21 @@ def initialize_ray_cluster(
|
||||
else:
|
||||
ray.init(address=ray_address, ignore_reinit_error=True)
|
||||
|
||||
if parallel_config.placement_group:
|
||||
# Placement group is already set.
|
||||
return
|
||||
|
||||
device_str = current_platform.ray_device_key
|
||||
if not device_str:
|
||||
raise ValueError(
|
||||
f"current platform {current_platform.device_name} does not "
|
||||
"support ray.")
|
||||
|
||||
# Create placement group for worker processes
|
||||
current_placement_group = ray.util.get_current_placement_group()
|
||||
# Create or get the placement group for worker processes
|
||||
if parallel_config.placement_group:
|
||||
current_placement_group = parallel_config.placement_group
|
||||
else:
|
||||
current_placement_group = ray.util.get_current_placement_group()
|
||||
|
||||
if current_placement_group:
|
||||
logger.info("Using the existing placement group")
|
||||
|
||||
# We are in a placement group
|
||||
bundles = current_placement_group.bundle_specs
|
||||
# Verify that we can use the placement group.
|
||||
@ -331,6 +334,8 @@ def initialize_ray_cluster(
|
||||
f"Required number of devices: {parallel_config.world_size}. "
|
||||
f"Total number of devices: {device_bundles}.")
|
||||
else:
|
||||
logger.info("No current placement group found. "
|
||||
"Creating a new placement group.")
|
||||
num_devices_in_cluster = ray.cluster_resources().get(device_str, 0)
|
||||
# Log a warning message and delay resource allocation failure response.
|
||||
# Avoid immediate rejection to allow user-initiated placement group
|
||||
|
@ -2147,20 +2147,48 @@ def zmq_socket_ctx(path: str, socket_type: Any) -> Iterator[zmq.Socket]:
|
||||
ctx.destroy(linger=0)
|
||||
|
||||
|
||||
def _check_multiproc_method():
|
||||
if (cuda_is_initialized()
|
||||
and os.environ.get("VLLM_WORKER_MULTIPROC_METHOD") != "spawn"):
|
||||
logger.warning("CUDA was previously initialized. We must use "
|
||||
"the `spawn` multiprocessing start method. Setting "
|
||||
"VLLM_WORKER_MULTIPROC_METHOD to 'spawn'. "
|
||||
"See https://docs.vllm.ai/en/latest/getting_started/"
|
||||
"troubleshooting.html#python-multiprocessing "
|
||||
"for more information.")
|
||||
def is_in_ray_actor():
|
||||
"""Check if we are in a Ray actor."""
|
||||
|
||||
try:
|
||||
import ray
|
||||
return (ray.is_initialized()
|
||||
and ray.get_runtime_context().get_actor_id() is not None)
|
||||
except ImportError:
|
||||
return False
|
||||
|
||||
|
||||
def _maybe_force_spawn():
|
||||
"""Check if we need to force the use of the `spawn` multiprocessing start
|
||||
method.
|
||||
"""
|
||||
if os.environ.get("VLLM_WORKER_MULTIPROC_METHOD") == "spawn":
|
||||
return
|
||||
|
||||
reason = None
|
||||
if cuda_is_initialized():
|
||||
reason = "CUDA is initialized"
|
||||
elif is_in_ray_actor():
|
||||
reason = "In a Ray actor and can only be spawned"
|
||||
|
||||
if reason is not None:
|
||||
logger.warning(
|
||||
"We must use the `spawn` multiprocessing start method. "
|
||||
"Overriding VLLM_WORKER_MULTIPROC_METHOD to 'spawn'. "
|
||||
"See https://docs.vllm.ai/en/latest/getting_started/"
|
||||
"troubleshooting.html#python-multiprocessing "
|
||||
"for more information. Reason: %s", reason)
|
||||
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
|
||||
|
||||
|
||||
def get_mp_context():
|
||||
_check_multiproc_method()
|
||||
"""Get a multiprocessing context with a particular method (spawn or fork).
|
||||
By default we follow the value of the VLLM_WORKER_MULTIPROC_METHOD to
|
||||
determine the multiprocessing method (default is fork). However, under
|
||||
certain conditions, we may enforce spawn and override the value of
|
||||
VLLM_WORKER_MULTIPROC_METHOD.
|
||||
"""
|
||||
_maybe_force_spawn()
|
||||
mp_method = envs.VLLM_WORKER_MULTIPROC_METHOD
|
||||
return multiprocessing.get_context(mp_method)
|
||||
|
||||
|
Reference in New Issue
Block a user