mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Fix GLM-4.5V-FP8 numerical issue (#22949)
Signed-off-by: qizixi <qizixi@meta.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
This commit is contained in:
@ -333,6 +333,80 @@ def run_glm4_1v(questions: list[str], modality: str) -> ModelRequestData:
|
||||
)
|
||||
|
||||
|
||||
# GLM-4.5V
|
||||
def run_glm4_5v(questions: list[str], modality: str) -> ModelRequestData:
|
||||
model_name = "zai-org/GLM-4.5V"
|
||||
|
||||
engine_args = EngineArgs(
|
||||
model=model_name,
|
||||
max_model_len=4096,
|
||||
max_num_seqs=2,
|
||||
mm_processor_kwargs={
|
||||
"size": {"shortest_edge": 12544, "longest_edge": 47040000},
|
||||
"fps": 1,
|
||||
},
|
||||
limit_mm_per_prompt={modality: 1},
|
||||
enforce_eager=True,
|
||||
tensor_parallel_size=4,
|
||||
)
|
||||
|
||||
if modality == "image":
|
||||
placeholder = "<|begin_of_image|><|image|><|end_of_image|>"
|
||||
elif modality == "video":
|
||||
placeholder = "<|begin_of_video|><|video|><|end_of_video|>"
|
||||
|
||||
prompts = [
|
||||
(
|
||||
"[gMASK]<sop><|system|>\nYou are a helpful assistant.<|user|>\n"
|
||||
f"{placeholder}"
|
||||
f"{question}<|assistant|>assistant\n"
|
||||
)
|
||||
for question in questions
|
||||
]
|
||||
|
||||
return ModelRequestData(
|
||||
engine_args=engine_args,
|
||||
prompts=prompts,
|
||||
)
|
||||
|
||||
|
||||
# GLM-4.5V-FP8
|
||||
def run_glm4_5v_fp8(questions: list[str], modality: str) -> ModelRequestData:
|
||||
model_name = "zai-org/GLM-4.5V-FP8"
|
||||
|
||||
engine_args = EngineArgs(
|
||||
model=model_name,
|
||||
max_model_len=4096,
|
||||
max_num_seqs=2,
|
||||
mm_processor_kwargs={
|
||||
"size": {"shortest_edge": 12544, "longest_edge": 47040000},
|
||||
"fps": 1,
|
||||
},
|
||||
limit_mm_per_prompt={modality: 1},
|
||||
enforce_eager=True,
|
||||
tensor_parallel_size=4,
|
||||
)
|
||||
|
||||
if modality == "image":
|
||||
placeholder = "<|begin_of_image|><|image|><|end_of_image|>"
|
||||
elif modality == "video":
|
||||
placeholder = "<|begin_of_video|><|video|><|end_of_video|>"
|
||||
|
||||
prompts = [
|
||||
(
|
||||
"[gMASK]<sop><|system|>\nYou are a helpful assistant.<|user|>\n"
|
||||
f"{placeholder}"
|
||||
f"{question}<|assistant|>assistant\n"
|
||||
)
|
||||
for question in questions
|
||||
]
|
||||
|
||||
return ModelRequestData(
|
||||
engine_args=engine_args,
|
||||
prompts=prompts,
|
||||
)
|
||||
|
||||
|
||||
# H2OVL-Mississippi
|
||||
def run_h2ovl(questions: list[str], modality: str) -> ModelRequestData:
|
||||
assert modality == "image"
|
||||
@ -383,8 +457,8 @@ def run_hyperclovax_seed_vision(
|
||||
for question in questions:
|
||||
if modality == "image":
|
||||
"""
|
||||
ocr: List the words in the image in raster order.
|
||||
Even if the word order feels unnatural for reading,
|
||||
ocr: List the words in the image in raster order.
|
||||
Even if the word order feels unnatural for reading,
|
||||
the model will handle it as long as it follows raster order.
|
||||
e.g. "Naver, CLOVA, bigshane"
|
||||
lens_keywords: List the entity names in the image.
|
||||
@ -1448,6 +1522,8 @@ model_example_map = {
|
||||
"gemma3n": run_gemma3n,
|
||||
"glm4v": run_glm4v,
|
||||
"glm4_1v": run_glm4_1v,
|
||||
"glm4_5v": run_glm4_5v,
|
||||
"glm4_5v_fp8": run_glm4_5v_fp8,
|
||||
"h2ovl_chat": run_h2ovl,
|
||||
"hyperclovax_seed_vision": run_hyperclovax_seed_vision,
|
||||
"idefics3": run_idefics3,
|
||||
|
@ -1064,6 +1064,76 @@ def load_tarsier2(question: str, image_urls: list[str]) -> ModelRequestData:
|
||||
)
|
||||
|
||||
|
||||
# GLM-4.5V
|
||||
def load_glm4_5v(question: str, image_urls: list[str]) -> ModelRequestData:
|
||||
model_name = "zai-org/GLM-4.5V"
|
||||
|
||||
engine_args = EngineArgs(
|
||||
model=model_name,
|
||||
max_model_len=32768,
|
||||
max_num_seqs=2,
|
||||
limit_mm_per_prompt={"image": len(image_urls)},
|
||||
enforce_eager=True,
|
||||
tensor_parallel_size=4,
|
||||
)
|
||||
placeholders = [{"type": "image", "image": url} for url in image_urls]
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
*placeholders,
|
||||
{"type": "text", "text": question},
|
||||
],
|
||||
}
|
||||
]
|
||||
processor = AutoProcessor.from_pretrained(model_name)
|
||||
prompt = processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
image_data = [fetch_image(url) for url in image_urls]
|
||||
|
||||
return ModelRequestData(
|
||||
engine_args=engine_args,
|
||||
prompt=prompt,
|
||||
image_data=image_data,
|
||||
)
|
||||
|
||||
|
||||
# GLM-4.5V-FP8
|
||||
def load_glm4_5v_fp8(question: str, image_urls: list[str]) -> ModelRequestData:
|
||||
model_name = "zai-org/GLM-4.5V-FP8"
|
||||
|
||||
engine_args = EngineArgs(
|
||||
model=model_name,
|
||||
max_model_len=32768,
|
||||
max_num_seqs=2,
|
||||
limit_mm_per_prompt={"image": len(image_urls)},
|
||||
enforce_eager=True,
|
||||
tensor_parallel_size=4,
|
||||
)
|
||||
placeholders = [{"type": "image", "image": url} for url in image_urls]
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
*placeholders,
|
||||
{"type": "text", "text": question},
|
||||
],
|
||||
}
|
||||
]
|
||||
processor = AutoProcessor.from_pretrained(model_name)
|
||||
prompt = processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
image_data = [fetch_image(url) for url in image_urls]
|
||||
|
||||
return ModelRequestData(
|
||||
engine_args=engine_args,
|
||||
prompt=prompt,
|
||||
image_data=image_data,
|
||||
)
|
||||
|
||||
|
||||
model_example_map = {
|
||||
"aria": load_aria,
|
||||
"aya_vision": load_aya_vision,
|
||||
@ -1096,6 +1166,8 @@ model_example_map = {
|
||||
"step3": load_step3,
|
||||
"tarsier": load_tarsier,
|
||||
"tarsier2": load_tarsier2,
|
||||
"glm4_5v": load_glm4_5v,
|
||||
"glm4_5v_fp8": load_glm4_5v_fp8,
|
||||
}
|
||||
|
||||
|
||||
|
@ -126,7 +126,7 @@ class Glm4vVideoPixelInputs(TensorSchema):
|
||||
- ctpp: Number of channels * temporal_patch_size *
|
||||
patch_size * patch_size
|
||||
- f: Number of frames
|
||||
- g: Grid dimensions (3 for grid_t which is usually 1 for processed
|
||||
- g: Grid dimensions (3 for grid_t which is usually 1 for processed
|
||||
video, grid_h, grid_w)
|
||||
"""
|
||||
type: Literal["pixel_values_videos"] = "pixel_values_videos"
|
||||
@ -141,7 +141,7 @@ class Glm4vVideoEmbeddingInputs(TensorSchema):
|
||||
- p: Number of video patches across all frames
|
||||
- h: Hidden size (must match language model backbone)
|
||||
- f: Number of frames
|
||||
- g: Grid dimensions (3 for grid_t which is usually 1 for processed
|
||||
- g: Grid dimensions (3 for grid_t which is usually 1 for processed
|
||||
video, grid_h, grid_w)
|
||||
"""
|
||||
type: Literal["video_embeds"] = "video_embeds"
|
||||
@ -234,7 +234,8 @@ class Glm4vVisionAttention(nn.Module):
|
||||
total_num_kv_heads=num_heads,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.qkv",
|
||||
# Change qkv prefix to align with GLM-4.5V-FP8 quantization config
|
||||
prefix=f"{prefix}.qkv_proj" if quant_config else f"{prefix}.qkv",
|
||||
)
|
||||
self.proj = RowParallelLinear(
|
||||
input_size=projection_size,
|
||||
|
Reference in New Issue
Block a user