Add more documentation and improve usability of lognormal dist (benchmark_serving_multi_turn) (#23255)

Signed-off-by: daniels <daniels@pliops.com>
This commit is contained in:
Daniel Serebrenik
2025-09-17 08:53:17 +03:00
committed by GitHub
parent ca2d1925ef
commit 43a62c51be
3 changed files with 203 additions and 8 deletions

View File

@ -55,6 +55,107 @@ output_num_chunks 166.0 99.01 11.80 79.00 90.00 98.00 108.75
----------------------------------------------------------------------------------------------------
```
### JSON configuration file for synthetic conversations generation
The input flag `--input-file` is used to determine the input conversations for the benchmark.<br/>
When the input is a JSON file with the field `"filetype": "generate_conversations"` the tool will generate synthetic multi-turn (questions and answers) conversations.
The file `generate_multi_turn.json` is an example file.
The file must contain the sections `prompt_input` and `prompt_output`.
The `prompt_input` section must contain `num_turns`, `prefix_num_tokens` and `num_tokens`:
* `num_turns` - Number of total turns in the conversation (both user & assistant).<br/>
The final value will always be rounded to an even number so each user turn has a reply.
* `prefix_num_tokens` - Tokens added at the start of only the **first user turn** in a conversation (unique per conversation).
* `num_tokens` - Total token length of each **user** message (one turn).
The `prompt_output` section must contain `num_tokens`:
* `num_tokens` - Total token length of each **assistant** message (one turn).
### Random distributions for synthetic conversations generation
When creating an input JSON file (such as `generate_multi_turn.json`),<br/>
every numeric field (such as `num_turns` or `num_tokens`) requires a distribution.<br/>
The distribution determines how to randomly sample values for the field.
The available distributions are listed below.
**Note:** The optional `max` field (for lognormal, zipf, and poisson) can be used to cap sampled values at an upper bound.</br>
Can be used to make sure that the total number of tokens in every request does not exceed `--max-model-len`.
#### constant
```json
{
"distribution": "constant",
"value": 500
}
```
* `value` - the fixed integer value (always returns the same number).
#### uniform
```json
{
"distribution": "uniform",
"min": 12,
"max": 18
}
```
* `min` - minimum value (inclusive).
* `max` - maximum value (inclusive), should be equal or larger than min.
#### lognormal
```json
{
"distribution": "lognormal",
"average": 1000,
"max": 5000
}
```
You can parameterize the lognormal distribution in one of two ways:
Using the average and optional median ratio:
* `average` - target average value of the distribution.
* `median_ratio` - the ratio of the median to the average; controls the skewness. Must be in the range (0, 1).
Using the parameters of the underlying normal distribution:
* `mean` - mean of the underlying normal distribution.
* `sigma` - standard deviation of the underlying normal distribution.
#### zipf
```json
{
"distribution": "zipf",
"alpha": 1.2,
"max": 100
}
```
* `alpha` - skew parameter (> 1). Larger values produce stronger skew toward smaller integers.
#### poisson
```json
{
"distribution": "poisson",
"alpha": 10,
"max": 50
}
```
* `alpha` - expected value (λ). Also the variance of the distribution.
## ShareGPT Conversations
To run with the ShareGPT data, download the following ShareGPT dataset:

View File

@ -99,21 +99,105 @@ class PoissonDistribution(Distribution):
class LognormalDistribution(Distribution):
def __init__(
self, mean: float, sigma: float, max_val: Optional[int] = None
self,
mean: Optional[float] = None,
sigma: Optional[float] = None,
average: Optional[int] = None,
median_ratio: Optional[float] = None,
max_val: Optional[int] = None,
) -> None:
self.average = average
self.median_ratio = median_ratio
self.max_val = max_val
if average is not None:
if average < 1:
raise ValueError("Lognormal average must be positive")
if mean or sigma:
raise ValueError(
"When using lognormal average, you can't provide mean/sigma"
)
if self.median_ratio is None:
# Default value that provides relatively wide range of values
self.median_ratio = 0.85
# Calculate mean/sigma of np.random.lognormal based on the average
mean, sigma = self._generate_lognormal_by_median(
target_average=self.average, median_ratio=self.median_ratio
)
else:
if mean is None or sigma is None:
raise ValueError(
"Must provide both mean and sigma if average is not used"
)
if mean <= 0 or sigma < 0:
raise ValueError(
"Lognormal mean must be positive and sigma must be non-negative"
)
# Mean and standard deviation of the underlying normal distribution
# Based on numpy.random.lognormal
self.mean = mean
self.sigma = sigma
self.max_val = max_val
@staticmethod
def _generate_lognormal_by_median(
target_average: int, median_ratio: float
) -> tuple[float, float]:
"""
Compute (mu, sigma) for a lognormal distribution given:
- a target average (mean of the distribution)
- a ratio of median / mean (controls skewness), assume mean > median
Background:
If Z ~ Normal(mu, sigma^2), then X = exp(Z) ~ LogNormal(mu, sigma).
* mean(X) = exp(mu + sigma^2 / 2)
* median(X) = exp(mu)
So:
median / mean = exp(mu) / exp(mu + sigma^2 / 2)
= exp(-sigma^2 / 2)
Rearranging:
sigma^2 = 2 * ln(mean / median)
mu = ln(median)
This gives a unique (mu, sigma) for any valid mean and median.
"""
# Check input validity: median must be smaller than mean
if median_ratio <= 0 or median_ratio >= 1:
raise ValueError("median_ratio must be in range (0, 1)")
target_median = target_average * median_ratio
# Solve sigma^2 = 2 * ln(mean / median)
sigma = np.sqrt(2 * np.log(target_average / target_median))
mu = np.log(target_median)
return mu, sigma
def sample(self, size: int = 1) -> np.ndarray:
samples = np.random.lognormal(mean=self.mean, sigma=self.sigma, size=size)
if self.average is not None:
# Scale to average
samples *= self.average / samples.mean()
if self.max_val:
samples = np.minimum(samples, self.max_val)
return np.round(samples).astype(int)
def __repr__(self) -> str:
return f"LognormalDistribution[{self.mean}, {self.sigma}]"
if self.average:
return (
f"LognormalDistribution[{self.average}, "
f"{self.median_ratio}, {self.max_val}]"
)
return f"LognormalDistribution[{self.mean}, {self.sigma}, {self.max_val}]"
class GenConvArgs(NamedTuple):
@ -173,10 +257,21 @@ def get_random_distribution(
return PoissonDistribution(conf["alpha"], max_val=max_val)
elif distribution == "lognormal":
max_val = conf.get("max", None)
if "average" in conf:
# Infer lognormal mean/sigma (numpy) from input average
median_ratio = conf.get("median_ratio", None)
return LognormalDistribution(
average=conf["average"], median_ratio=median_ratio, max_val=max_val
)
# Use mean/sigma directly (for full control over the distribution)
verify_field_exists(conf, "mean", section, subsection)
verify_field_exists(conf, "sigma", section, subsection)
max_val = conf.get("max", None)
return LognormalDistribution(conf["mean"], conf["sigma"], max_val=max_val)
return LognormalDistribution(
mean=conf["mean"], sigma=conf["sigma"], max_val=max_val
)
elif distribution == "uniform":
verify_field_exists(conf, "min", section, subsection)

View File

@ -15,9 +15,8 @@
},
"prefix_num_tokens": {
"distribution": "lognormal",
"mean": 6,
"sigma": 4,
"max": 1500
"average": 1000,
"max": 5000
},
"num_tokens": {
"distribution": "uniform",