mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Bugfix] Set SamplingParams.max_tokens for OpenAI requests if not provided by user (#6954)
This commit is contained in:
@ -1,7 +1,12 @@
|
||||
import asyncio
|
||||
from contextlib import suppress
|
||||
from dataclasses import dataclass
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
||||
from vllm.entrypoints.openai.protocol import ChatCompletionRequest
|
||||
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
MODEL_NAME = "openai-community/gpt2"
|
||||
CHAT_TEMPLATE = "Dummy chat template for testing {}"
|
||||
@ -42,3 +47,37 @@ async def _async_serving_chat_init():
|
||||
def test_async_serving_chat_init():
|
||||
serving_completion = asyncio.run(_async_serving_chat_init())
|
||||
assert serving_completion.chat_template == CHAT_TEMPLATE
|
||||
|
||||
|
||||
def test_serving_chat_should_set_correct_max_tokens():
|
||||
mock_engine = MagicMock(spec=AsyncLLMEngine)
|
||||
mock_engine.get_tokenizer.return_value = get_tokenizer(MODEL_NAME)
|
||||
|
||||
serving_chat = OpenAIServingChat(mock_engine,
|
||||
MockModelConfig(),
|
||||
served_model_names=[MODEL_NAME],
|
||||
response_role="assistant",
|
||||
chat_template=CHAT_TEMPLATE,
|
||||
lora_modules=None,
|
||||
prompt_adapters=None,
|
||||
request_logger=None)
|
||||
req = ChatCompletionRequest(
|
||||
model=MODEL_NAME,
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": "what is 1+1?"
|
||||
}],
|
||||
guided_decoding_backend="outlines",
|
||||
)
|
||||
|
||||
with suppress(Exception):
|
||||
asyncio.run(serving_chat.create_chat_completion(req))
|
||||
|
||||
# AsyncLLMEngine.generate(inputs, sampling_params, ...)
|
||||
assert mock_engine.generate.call_args.args[1].max_tokens == 93
|
||||
|
||||
req.max_tokens = 10
|
||||
with suppress(Exception):
|
||||
asyncio.run(serving_chat.create_chat_completion(req))
|
||||
|
||||
assert mock_engine.generate.call_args.args[1].max_tokens == 10
|
||||
|
@ -11,7 +11,7 @@ from typing_extensions import Annotated
|
||||
from vllm.entrypoints.chat_utils import ChatCompletionMessageParam
|
||||
from vllm.entrypoints.openai.logits_processors import get_logits_processors
|
||||
from vllm.pooling_params import PoolingParams
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.sampling_params import LogitsProcessor, SamplingParams
|
||||
from vllm.utils import random_uuid
|
||||
|
||||
|
||||
@ -215,15 +215,22 @@ class ChatCompletionRequest(OpenAIBaseModel):
|
||||
|
||||
# doc: end-chat-completion-extra-params
|
||||
|
||||
def to_sampling_params(self,
|
||||
tokenizer: PreTrainedTokenizer) -> SamplingParams:
|
||||
# We now allow logprobs being true without top_logrobs.
|
||||
def to_sampling_params(
|
||||
self, tokenizer: PreTrainedTokenizer,
|
||||
guided_decode_logits_processor: Optional[LogitsProcessor],
|
||||
default_max_tokens: int) -> SamplingParams:
|
||||
max_tokens = self.max_tokens
|
||||
if max_tokens is None:
|
||||
max_tokens = default_max_tokens
|
||||
|
||||
# We now allow logprobs being true without top_logrobs.
|
||||
logits_processors = get_logits_processors(
|
||||
logit_bias=self.logit_bias,
|
||||
allowed_token_ids=None,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
if guided_decode_logits_processor:
|
||||
logits_processors.append(guided_decode_logits_processor)
|
||||
|
||||
return SamplingParams(
|
||||
n=self.n,
|
||||
@ -241,7 +248,7 @@ class ChatCompletionRequest(OpenAIBaseModel):
|
||||
logprobs=self.top_logprobs if self.logprobs else None,
|
||||
prompt_logprobs=self.top_logprobs if self.echo else None,
|
||||
ignore_eos=self.ignore_eos,
|
||||
max_tokens=self.max_tokens,
|
||||
max_tokens=max_tokens,
|
||||
min_tokens=self.min_tokens,
|
||||
use_beam_search=self.use_beam_search,
|
||||
early_stopping=self.early_stopping,
|
||||
@ -395,7 +402,14 @@ class CompletionRequest(OpenAIBaseModel):
|
||||
|
||||
# doc: end-completion-extra-params
|
||||
|
||||
def to_sampling_params(self, tokenizer: PreTrainedTokenizer):
|
||||
def to_sampling_params(
|
||||
self, tokenizer: PreTrainedTokenizer,
|
||||
guided_decode_logits_processor: Optional[LogitsProcessor],
|
||||
default_max_tokens: int) -> SamplingParams:
|
||||
max_tokens = self.max_tokens
|
||||
if max_tokens is None:
|
||||
max_tokens = default_max_tokens
|
||||
|
||||
echo_without_generation = self.echo and self.max_tokens == 0
|
||||
|
||||
logits_processors = get_logits_processors(
|
||||
@ -403,6 +417,8 @@ class CompletionRequest(OpenAIBaseModel):
|
||||
allowed_token_ids=self.allowed_token_ids,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
if guided_decode_logits_processor:
|
||||
logits_processors.append(guided_decode_logits_processor)
|
||||
|
||||
return SamplingParams(
|
||||
n=self.n,
|
||||
@ -419,7 +435,7 @@ class CompletionRequest(OpenAIBaseModel):
|
||||
stop_token_ids=self.stop_token_ids,
|
||||
logprobs=self.logprobs,
|
||||
ignore_eos=self.ignore_eos,
|
||||
max_tokens=self.max_tokens if not echo_without_generation else 1,
|
||||
max_tokens=max_tokens if not echo_without_generation else 1,
|
||||
min_tokens=self.min_tokens,
|
||||
use_beam_search=self.use_beam_search,
|
||||
early_stopping=self.early_stopping,
|
||||
|
@ -25,8 +25,6 @@ from vllm.entrypoints.openai.serving_engine import (LoRAModulePath,
|
||||
PromptAdapterPath)
|
||||
from vllm.inputs import PromptInputs
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.guided_decoding import (
|
||||
get_guided_decoding_logits_processor)
|
||||
from vllm.multimodal import MultiModalDataDict
|
||||
from vllm.outputs import RequestOutput
|
||||
from vllm.sequence import Logprob
|
||||
@ -134,28 +132,23 @@ class OpenAIServingChat(OpenAIServing):
|
||||
|
||||
request_id = f"chat-{random_uuid()}"
|
||||
try:
|
||||
sampling_params = request.to_sampling_params(tokenizer)
|
||||
decoding_config = await self.engine.get_decoding_config()
|
||||
guided_decoding_backend = request.guided_decoding_backend \
|
||||
or decoding_config.guided_decoding_backend
|
||||
guided_decode_logits_processor = (
|
||||
await
|
||||
get_guided_decoding_logits_processor(guided_decoding_backend,
|
||||
request, tokenizer))
|
||||
if guided_decode_logits_processor:
|
||||
if sampling_params.logits_processors is None:
|
||||
sampling_params.logits_processors = []
|
||||
sampling_params.logits_processors.append(
|
||||
guided_decode_logits_processor)
|
||||
await self._guided_decode_logits_processor(request, tokenizer))
|
||||
|
||||
prompt_inputs = self._tokenize_prompt_input(
|
||||
request,
|
||||
tokenizer,
|
||||
prompt,
|
||||
truncate_prompt_tokens=sampling_params.truncate_prompt_tokens,
|
||||
truncate_prompt_tokens=request.truncate_prompt_tokens,
|
||||
add_special_tokens=request.add_special_tokens,
|
||||
)
|
||||
|
||||
sampling_params = request.to_sampling_params(
|
||||
tokenizer,
|
||||
guided_decode_logits_processor,
|
||||
default_max_tokens=self.max_model_len -
|
||||
len(prompt_inputs["prompt_token_ids"]))
|
||||
|
||||
self._log_inputs(request_id,
|
||||
prompt_inputs,
|
||||
params=sampling_params,
|
||||
|
@ -24,8 +24,6 @@ from vllm.entrypoints.openai.serving_engine import (LoRAModulePath,
|
||||
OpenAIServing,
|
||||
PromptAdapterPath)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.guided_decoding import (
|
||||
get_guided_decoding_logits_processor)
|
||||
from vllm.outputs import RequestOutput
|
||||
from vllm.sequence import Logprob
|
||||
from vllm.tracing import (contains_trace_headers, extract_trace_headers,
|
||||
@ -95,31 +93,24 @@ class OpenAIServingCompletion(OpenAIServing):
|
||||
|
||||
tokenizer = await self.engine.get_tokenizer(lora_request)
|
||||
|
||||
sampling_params = request.to_sampling_params(tokenizer)
|
||||
decoding_config = await self.engine.get_decoding_config()
|
||||
guided_decoding_backend = request.guided_decoding_backend \
|
||||
or decoding_config.guided_decoding_backend
|
||||
guided_decode_logit_processor = (
|
||||
await
|
||||
get_guided_decoding_logits_processor(guided_decoding_backend,
|
||||
request, tokenizer))
|
||||
if guided_decode_logit_processor is not None:
|
||||
if sampling_params.logits_processors is None:
|
||||
sampling_params.logits_processors = []
|
||||
sampling_params.logits_processors.append(
|
||||
guided_decode_logit_processor)
|
||||
|
||||
guided_decode_logits_processor = (
|
||||
await self._guided_decode_logits_processor(request, tokenizer))
|
||||
prompts = list(
|
||||
self._tokenize_prompt_input_or_inputs(
|
||||
request,
|
||||
tokenizer,
|
||||
request.prompt,
|
||||
truncate_prompt_tokens=sampling_params.
|
||||
truncate_prompt_tokens,
|
||||
truncate_prompt_tokens=request.truncate_prompt_tokens,
|
||||
add_special_tokens=request.add_special_tokens,
|
||||
))
|
||||
|
||||
for i, prompt_inputs in enumerate(prompts):
|
||||
sampling_params = request.to_sampling_params(
|
||||
tokenizer,
|
||||
guided_decode_logits_processor,
|
||||
default_max_tokens=self.max_model_len -
|
||||
len(prompt_inputs["prompt_token_ids"]))
|
||||
|
||||
request_id_item = f"{request_id}-{i}"
|
||||
|
||||
self._log_inputs(request_id_item,
|
||||
|
@ -25,9 +25,11 @@ from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
||||
from vllm.inputs import parse_and_batch_prompt
|
||||
from vllm.logger import init_logger
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.model_executor.guided_decoding import (
|
||||
get_guided_decoding_logits_processor)
|
||||
from vllm.pooling_params import PoolingParams
|
||||
from vllm.prompt_adapter.request import PromptAdapterRequest
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.sampling_params import LogitsProcessor, SamplingParams
|
||||
from vllm.sequence import Logprob
|
||||
from vllm.transformers_utils.tokenizer_group import AnyTokenizer
|
||||
|
||||
@ -150,6 +152,15 @@ class OpenAIServing:
|
||||
})
|
||||
return json_str
|
||||
|
||||
async def _guided_decode_logits_processor(
|
||||
self, request: Union[ChatCompletionRequest, CompletionRequest],
|
||||
tokenizer: AnyTokenizer) -> Optional[LogitsProcessor]:
|
||||
decoding_config = await self.engine.get_decoding_config()
|
||||
guided_decoding_backend = request.guided_decoding_backend \
|
||||
or decoding_config.guided_decoding_backend
|
||||
return await get_guided_decoding_logits_processor(
|
||||
guided_decoding_backend, request, tokenizer)
|
||||
|
||||
async def _check_model(
|
||||
self,
|
||||
request: AnyRequest,
|
||||
@ -254,9 +265,7 @@ class OpenAIServing:
|
||||
f"{self.max_model_len} tokens. However, you requested "
|
||||
f"{token_num} tokens in the messages, "
|
||||
f"Please reduce the length of the messages.")
|
||||
request.max_tokens = self.max_model_len - token_num
|
||||
|
||||
if token_num + request.max_tokens > self.max_model_len:
|
||||
elif token_num + request.max_tokens > self.max_model_len:
|
||||
raise ValueError(
|
||||
f"This model's maximum context length is "
|
||||
f"{self.max_model_len} tokens. However, you requested "
|
||||
|
Reference in New Issue
Block a user