[CI/Build] Simplify OpenAI server setup in tests (#5100)

This commit is contained in:
Cyrus Leung
2024-06-14 02:21:53 +08:00
committed by GitHub
parent 03dccc886e
commit 39873476f8
6 changed files with 284 additions and 237 deletions

View File

@ -4,16 +4,22 @@ import pytest
# and debugging.
import ray
from ..utils import ServerRunner
from ..utils import VLLM_PATH, RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "facebook/opt-125m"
@pytest.fixture(scope="module")
def server():
ray.init()
server_runner = ServerRunner.remote([
def ray_ctx():
ray.init(runtime_env={"working_dir": VLLM_PATH})
yield
ray.shutdown()
@pytest.fixture(scope="module")
def server(ray_ctx):
return RemoteOpenAIServer([
"--model",
MODEL_NAME,
# use half precision for speed and memory savings in CI environment
@ -24,22 +30,15 @@ def server():
"--enforce-eager",
"--engine-use-ray"
])
ray.get(server_runner.ready.remote())
yield server_runner
ray.shutdown()
@pytest.fixture(scope="module")
def client():
client = openai.AsyncOpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123",
)
yield client
def client(server):
return server.get_async_client()
@pytest.mark.asyncio
async def test_check_models(server, client: openai.AsyncOpenAI):
async def test_check_models(client: openai.AsyncOpenAI):
models = await client.models.list()
models = models.data
served_model = models[0]
@ -48,7 +47,7 @@ async def test_check_models(server, client: openai.AsyncOpenAI):
@pytest.mark.asyncio
async def test_single_completion(server, client: openai.AsyncOpenAI):
async def test_single_completion(client: openai.AsyncOpenAI):
completion = await client.completions.create(model=MODEL_NAME,
prompt="Hello, my name is",
max_tokens=5,
@ -72,7 +71,7 @@ async def test_single_completion(server, client: openai.AsyncOpenAI):
@pytest.mark.asyncio
async def test_single_chat_session(server, client: openai.AsyncOpenAI):
async def test_single_chat_session(client: openai.AsyncOpenAI):
messages = [{
"role": "system",
"content": "you are a helpful assistant"

View File

@ -0,0 +1,113 @@
import openai
import pytest
import ray
from ..utils import VLLM_PATH, RemoteOpenAIServer
EMBEDDING_MODEL_NAME = "intfloat/e5-mistral-7b-instruct"
pytestmark = pytest.mark.openai
@pytest.fixture(scope="module")
def ray_ctx():
ray.init(runtime_env={"working_dir": VLLM_PATH})
yield
ray.shutdown()
@pytest.fixture(scope="module")
def embedding_server(ray_ctx):
return RemoteOpenAIServer([
"--model",
EMBEDDING_MODEL_NAME,
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--enforce-eager",
"--max-model-len",
"8192",
"--enforce-eager",
])
@pytest.mark.asyncio
@pytest.fixture(scope="module")
def embedding_client(embedding_server):
return embedding_server.get_async_client()
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[EMBEDDING_MODEL_NAME],
)
async def test_single_embedding(embedding_client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"The chef prepared a delicious meal.",
]
# test single embedding
embeddings = await embedding_client.embeddings.create(
model=model_name,
input=input_texts,
encoding_format="float",
)
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 9
assert embeddings.usage.total_tokens == 9
# test using token IDs
input_tokens = [1, 1, 1, 1, 1]
embeddings = await embedding_client.embeddings.create(
model=model_name,
input=input_tokens,
encoding_format="float",
)
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 5
assert embeddings.usage.total_tokens == 5
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[EMBEDDING_MODEL_NAME],
)
async def test_batch_embedding(embedding_client: openai.AsyncOpenAI,
model_name: str):
# test List[str]
input_texts = [
"The cat sat on the mat.", "A feline was resting on a rug.",
"Stars twinkle brightly in the night sky."
]
embeddings = await embedding_client.embeddings.create(
model=model_name,
input=input_texts,
encoding_format="float",
)
assert embeddings.id is not None
assert len(embeddings.data) == 3
assert len(embeddings.data[0].embedding) == 4096
# test List[List[int]]
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
[25, 32, 64, 77]]
embeddings = await embedding_client.embeddings.create(
model=model_name,
input=input_tokens,
encoding_format="float",
)
assert embeddings.id is not None
assert len(embeddings.data) == 4
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 17
assert embeddings.usage.total_tokens == 17

View File

@ -15,11 +15,10 @@ from openai import BadRequestError
from vllm.transformers_utils.tokenizer import get_tokenizer
from ..utils import ServerRunner
from ..utils import VLLM_PATH, RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
EMBEDDING_MODEL_NAME = "intfloat/e5-mistral-7b-instruct"
# technically this needs Mistral-7B-v0.1 as base, but we're not testing
# generation quality here
LORA_NAME = "typeof/zephyr-7b-beta-lora"
@ -80,9 +79,15 @@ def zephyr_lora_files():
@pytest.fixture(scope="module")
def server(zephyr_lora_files):
ray.init()
server_runner = ServerRunner.remote([
def ray_ctx():
ray.init(runtime_env={"working_dir": VLLM_PATH})
yield
ray.shutdown()
@pytest.fixture(scope="module")
def server(zephyr_lora_files, ray_ctx):
return RemoteOpenAIServer([
"--model",
MODEL_NAME,
# use half precision for speed and memory savings in CI environment
@ -91,8 +96,6 @@ def server(zephyr_lora_files):
"--max-model-len",
"8192",
"--enforce-eager",
"--gpu-memory-utilization",
"0.75",
# lora config below
"--enable-lora",
"--lora-modules",
@ -105,43 +108,14 @@ def server(zephyr_lora_files):
"--max-num-seqs",
"128",
])
ray.get(server_runner.ready.remote())
yield server_runner
ray.shutdown()
@pytest.fixture(scope="module")
def embedding_server(zephyr_lora_files):
ray.shutdown()
ray.init()
server_runner = ServerRunner.remote([
"--model",
EMBEDDING_MODEL_NAME,
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--enforce-eager",
"--gpu-memory-utilization",
"0.75",
"--max-model-len",
"8192",
])
ray.get(server_runner.ready.remote())
yield server_runner
ray.shutdown()
def client(server):
return server.get_async_client()
@pytest.fixture(scope="module")
def client():
client = openai.AsyncOpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123",
)
yield client
@pytest.mark.asyncio
async def test_check_models(server, client: openai.AsyncOpenAI):
async def test_check_models(client: openai.AsyncOpenAI):
models = await client.models.list()
models = models.data
served_model = models[0]
@ -158,8 +132,7 @@ async def test_check_models(server, client: openai.AsyncOpenAI):
"model_name",
[MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_single_completion(server, client: openai.AsyncOpenAI,
model_name: str):
async def test_single_completion(client: openai.AsyncOpenAI, model_name: str):
completion = await client.completions.create(model=model_name,
prompt="Hello, my name is",
max_tokens=5,
@ -190,8 +163,7 @@ async def test_single_completion(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_no_logprobs(server, client: openai.AsyncOpenAI,
model_name: str):
async def test_no_logprobs(client: openai.AsyncOpenAI, model_name: str):
# test using token IDs
completion = await client.completions.create(
model=MODEL_NAME,
@ -210,8 +182,7 @@ async def test_no_logprobs(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_zero_logprobs(server, client: openai.AsyncOpenAI,
model_name: str):
async def test_zero_logprobs(client: openai.AsyncOpenAI, model_name: str):
# test using token IDs
completion = await client.completions.create(
model=MODEL_NAME,
@ -232,8 +203,7 @@ async def test_zero_logprobs(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_some_logprobs(server, client: openai.AsyncOpenAI,
model_name: str):
async def test_some_logprobs(client: openai.AsyncOpenAI, model_name: str):
# test using token IDs
completion = await client.completions.create(
model=MODEL_NAME,
@ -254,7 +224,7 @@ async def test_some_logprobs(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_too_many_completion_logprobs(server, client: openai.AsyncOpenAI,
async def test_too_many_completion_logprobs(client: openai.AsyncOpenAI,
model_name: str):
with pytest.raises(
@ -300,8 +270,7 @@ async def test_too_many_completion_logprobs(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_no_logprobs_chat(server, client: openai.AsyncOpenAI,
model_name: str):
async def test_no_logprobs_chat(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -326,8 +295,7 @@ async def test_no_logprobs_chat(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_zero_logprobs_chat(server, client: openai.AsyncOpenAI,
model_name: str):
async def test_zero_logprobs_chat(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -354,8 +322,7 @@ async def test_zero_logprobs_chat(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_some_logprobs_chat(server, client: openai.AsyncOpenAI,
model_name: str):
async def test_some_logprobs_chat(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -382,7 +349,7 @@ async def test_some_logprobs_chat(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_too_many_chat_logprobs(server, client: openai.AsyncOpenAI,
async def test_too_many_chat_logprobs(client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
@ -425,7 +392,7 @@ async def test_too_many_chat_logprobs(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_single_chat_session(server, client: openai.AsyncOpenAI,
async def test_single_chat_session(client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
@ -470,7 +437,7 @@ async def test_single_chat_session(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_completion_streaming(server, client: openai.AsyncOpenAI,
async def test_completion_streaming(client: openai.AsyncOpenAI,
model_name: str):
prompt = "What is an LLM?"
@ -505,8 +472,7 @@ async def test_completion_streaming(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_chat_streaming(server, client: openai.AsyncOpenAI,
model_name: str):
async def test_chat_streaming(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -555,8 +521,7 @@ async def test_chat_streaming(server, client: openai.AsyncOpenAI,
"model_name",
["HuggingFaceH4/zephyr-7b-beta", "zephyr-lora"],
)
async def test_chat_completion_stream_options(server,
client: openai.AsyncOpenAI,
async def test_chat_completion_stream_options(client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
@ -626,7 +591,7 @@ async def test_chat_completion_stream_options(server,
"model_name",
["HuggingFaceH4/zephyr-7b-beta", "zephyr-lora"],
)
async def test_completion_stream_options(server, client: openai.AsyncOpenAI,
async def test_completion_stream_options(client: openai.AsyncOpenAI,
model_name: str):
prompt = "What is the capital of France?"
@ -688,8 +653,7 @@ async def test_completion_stream_options(server, client: openai.AsyncOpenAI,
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_batch_completions(server, client: openai.AsyncOpenAI,
model_name: str):
async def test_batch_completions(client: openai.AsyncOpenAI, model_name: str):
# test simple list
batch = await client.completions.create(
model=model_name,
@ -737,7 +701,7 @@ async def test_batch_completions(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
async def test_logits_bias(server, client: openai.AsyncOpenAI):
async def test_logits_bias(client: openai.AsyncOpenAI):
prompt = "Hello, my name is"
max_tokens = 5
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
@ -786,7 +750,7 @@ async def test_logits_bias(server, client: openai.AsyncOpenAI):
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_json_completion(server, client: openai.AsyncOpenAI,
async def test_guided_json_completion(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
completion = await client.completions.create(
model=MODEL_NAME,
@ -808,7 +772,7 @@ async def test_guided_json_completion(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_json_chat(server, client: openai.AsyncOpenAI,
async def test_guided_json_chat(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
@ -855,7 +819,7 @@ async def test_guided_json_chat(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_regex_completion(server, client: openai.AsyncOpenAI,
async def test_guided_regex_completion(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
completion = await client.completions.create(
model=MODEL_NAME,
@ -875,7 +839,7 @@ async def test_guided_regex_completion(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_regex_chat(server, client: openai.AsyncOpenAI,
async def test_guided_regex_chat(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
@ -913,7 +877,7 @@ async def test_guided_regex_chat(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_choice_completion(server, client: openai.AsyncOpenAI,
async def test_guided_choice_completion(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
completion = await client.completions.create(
model=MODEL_NAME,
@ -933,7 +897,7 @@ async def test_guided_choice_completion(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_choice_chat(server, client: openai.AsyncOpenAI,
async def test_guided_choice_chat(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
@ -972,7 +936,7 @@ async def test_guided_choice_chat(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_decoding_type_error(server, client: openai.AsyncOpenAI,
async def test_guided_decoding_type_error(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
with pytest.raises(openai.BadRequestError):
_ = await client.completions.create(
@ -1008,7 +972,7 @@ async def test_guided_decoding_type_error(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_choice_chat_logprobs(server, client: openai.AsyncOpenAI,
async def test_guided_choice_chat_logprobs(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
@ -1040,7 +1004,7 @@ async def test_guided_choice_chat_logprobs(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_named_tool_use(server, client: openai.AsyncOpenAI,
async def test_named_tool_use(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
@ -1131,7 +1095,7 @@ async def test_named_tool_use(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend", ["outlines"])
async def test_required_tool_use_not_yet_supported(
server, client: openai.AsyncOpenAI, guided_decoding_backend: str):
client: openai.AsyncOpenAI, guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -1177,7 +1141,7 @@ async def test_required_tool_use_not_yet_supported(
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend", ["outlines"])
async def test_inconsistent_tool_choice_and_tools(
server, client: openai.AsyncOpenAI, guided_decoding_backend: str):
client: openai.AsyncOpenAI, guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
@ -1223,7 +1187,7 @@ async def test_inconsistent_tool_choice_and_tools(
@pytest.mark.asyncio
async def test_response_format_json_object(server, client: openai.AsyncOpenAI):
async def test_response_format_json_object(client: openai.AsyncOpenAI):
for _ in range(2):
resp = await client.chat.completions.create(
model=MODEL_NAME,
@ -1243,7 +1207,7 @@ async def test_response_format_json_object(server, client: openai.AsyncOpenAI):
@pytest.mark.asyncio
async def test_extra_fields(server, client: openai.AsyncOpenAI):
async def test_extra_fields(client: openai.AsyncOpenAI):
with pytest.raises(BadRequestError) as exc_info:
await client.chat.completions.create(
model=MODEL_NAME,
@ -1259,7 +1223,7 @@ async def test_extra_fields(server, client: openai.AsyncOpenAI):
@pytest.mark.asyncio
async def test_complex_message_content(server, client: openai.AsyncOpenAI):
async def test_complex_message_content(client: openai.AsyncOpenAI):
resp = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
@ -1279,7 +1243,7 @@ async def test_complex_message_content(server, client: openai.AsyncOpenAI):
@pytest.mark.asyncio
async def test_custom_role(server, client: openai.AsyncOpenAI):
async def test_custom_role(client: openai.AsyncOpenAI):
# Not sure how the model handles custom roles so we just check that
# both string and complex message content are handled in the same way
@ -1310,7 +1274,7 @@ async def test_custom_role(server, client: openai.AsyncOpenAI):
@pytest.mark.asyncio
async def test_guided_grammar(server, client: openai.AsyncOpenAI):
async def test_guided_grammar(client: openai.AsyncOpenAI):
simple_sql_grammar = """
start: select_statement
@ -1351,7 +1315,7 @@ number: "1" | "2"
[MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
@pytest.mark.parametrize("logprobs_arg", [1, 0])
async def test_echo_logprob_completion(server, client: openai.AsyncOpenAI,
async def test_echo_logprob_completion(client: openai.AsyncOpenAI,
model_name: str, logprobs_arg: int):
tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
# test using text and token IDs
@ -1380,7 +1344,7 @@ async def test_echo_logprob_completion(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
async def test_long_seed(server, client: openai.AsyncOpenAI):
async def test_long_seed(client: openai.AsyncOpenAI):
for seed in [
torch.iinfo(torch.long).min - 1,
torch.iinfo(torch.long).max + 1
@ -1399,81 +1363,5 @@ async def test_long_seed(server, client: openai.AsyncOpenAI):
or "less_than_equal" in exc_info.value.message)
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[EMBEDDING_MODEL_NAME],
)
async def test_single_embedding(embedding_server, client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"The chef prepared a delicious meal.",
]
# test single embedding
embeddings = await client.embeddings.create(
model=model_name,
input=input_texts,
encoding_format="float",
)
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 9
assert embeddings.usage.total_tokens == 9
# test using token IDs
input_tokens = [1, 1, 1, 1, 1]
embeddings = await client.embeddings.create(
model=model_name,
input=input_tokens,
encoding_format="float",
)
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 5
assert embeddings.usage.total_tokens == 5
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[EMBEDDING_MODEL_NAME],
)
async def test_batch_embedding(embedding_server, client: openai.AsyncOpenAI,
model_name: str):
# test List[str]
input_texts = [
"The cat sat on the mat.", "A feline was resting on a rug.",
"Stars twinkle brightly in the night sky."
]
embeddings = await client.embeddings.create(
model=model_name,
input=input_texts,
encoding_format="float",
)
assert embeddings.id is not None
assert len(embeddings.data) == 3
assert len(embeddings.data[0].embedding) == 4096
# test List[List[int]]
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
[25, 32, 64, 77]]
embeddings = await client.embeddings.create(
model=model_name,
input=input_tokens,
encoding_format="float",
)
assert embeddings.id is not None
assert len(embeddings.data) == 4
assert len(embeddings.data[0].embedding) == 4096
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == 17
assert embeddings.usage.total_tokens == 17
if __name__ == "__main__":
pytest.main([__file__])

View File

@ -8,7 +8,7 @@ import ray
from vllm.multimodal.utils import ImageFetchAiohttp, encode_image_base64
from ..utils import ServerRunner
from ..utils import VLLM_PATH, RemoteOpenAIServer
MODEL_NAME = "llava-hf/llava-1.5-7b-hf"
LLAVA_CHAT_TEMPLATE = (Path(__file__).parent.parent.parent /
@ -25,10 +25,16 @@ TEST_IMAGE_URLS = [
pytestmark = pytest.mark.openai
@pytest.fixture(scope="module")
def ray_ctx():
ray.init(runtime_env={"working_dir": VLLM_PATH})
yield
ray.shutdown()
@pytest.fixture(scope="module")
def server():
ray.init()
server_runner = ServerRunner.remote([
return RemoteOpenAIServer([
"--model",
MODEL_NAME,
"--dtype",
@ -47,18 +53,11 @@ def server():
"--chat-template",
str(LLAVA_CHAT_TEMPLATE),
])
ray.get(server_runner.ready.remote())
yield server_runner
ray.shutdown()
@pytest.fixture(scope="session")
def client():
client = openai.AsyncOpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123",
)
yield client
@pytest.fixture(scope="module")
def client(server):
return server.get_async_client()
@pytest_asyncio.fixture(scope="session")
@ -73,7 +72,7 @@ async def base64_encoded_image() -> Dict[str, str]:
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_single_chat_session_image(server, client: openai.AsyncOpenAI,
async def test_single_chat_session_image(client: openai.AsyncOpenAI,
model_name: str, image_url: str):
messages = [{
"role":
@ -126,7 +125,7 @@ async def test_single_chat_session_image(server, client: openai.AsyncOpenAI,
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_single_chat_session_image_base64encoded(
server, client: openai.AsyncOpenAI, model_name: str, image_url: str,
client: openai.AsyncOpenAI, model_name: str, image_url: str,
base64_encoded_image: Dict[str, str]):
messages = [{
@ -180,7 +179,7 @@ async def test_single_chat_session_image_base64encoded(
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_chat_streaming_image(server, client: openai.AsyncOpenAI,
async def test_chat_streaming_image(client: openai.AsyncOpenAI,
model_name: str, image_url: str):
messages = [{
"role":
@ -237,8 +236,8 @@ async def test_chat_streaming_image(server, client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
async def test_multi_image_input(server, client: openai.AsyncOpenAI,
model_name: str, image_url: str):
async def test_multi_image_input(client: openai.AsyncOpenAI, model_name: str,
image_url: str):
messages = [{
"role":

View File

@ -22,11 +22,12 @@ from vllm.model_executor.model_loader.tensorizer import (TensorizerConfig,
tensorize_vllm_model)
from ..conftest import VllmRunner, cleanup
from ..utils import ServerRunner
from ..utils import RemoteOpenAIServer
# yapf conflicts with isort for this docstring
prompts = [
"Hello, my name is",
"The president of the United States is",
@ -216,18 +217,13 @@ def test_openai_apiserver_with_tensorizer(vllm_runner, tmp_path):
openai_args = [
"--model", model_ref, "--dtype", "float16", "--load-format",
"tensorizer", "--model-loader-extra-config",
json.dumps(model_loader_extra_config), "--port", "8000"
json.dumps(model_loader_extra_config),
]
server = ServerRunner.remote(openai_args)
assert ray.get(server.ready.remote())
server = RemoteOpenAIServer(openai_args)
print("Server ready.")
client = openai.OpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123",
)
client = server.get_client()
completion = client.completions.create(model=model_ref,
prompt="Hello, my name is",
max_tokens=5,

View File

@ -4,57 +4,109 @@ import sys
import time
import warnings
from contextlib import contextmanager
from typing import List
import openai
import ray
import requests
from vllm.distributed import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.entrypoints.openai.cli_args import make_arg_parser
from vllm.utils import get_open_port
# Path to root of repository so that utilities can be imported by ray workers
VLLM_PATH = os.path.abspath(os.path.join(__file__, os.pardir, os.pardir))
@ray.remote(num_gpus=1)
class ServerRunner:
class RemoteOpenAIServer:
DUMMY_API_KEY = "token-abc123" # vLLM's OpenAI server does not need API key
MAX_SERVER_START_WAIT_S = 600 # wait for server to start for 60 seconds
def __init__(self, args):
env = os.environ.copy()
env["PYTHONUNBUFFERED"] = "1"
self.proc = subprocess.Popen(
[sys.executable, "-m", "vllm.entrypoints.openai.api_server"] +
args,
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
@ray.remote(num_gpus=1)
class _RemoteRunner:
def __init__(self, cli_args: List[str], *, wait_url: str,
wait_timeout: float) -> None:
env = os.environ.copy()
env["PYTHONUNBUFFERED"] = "1"
self.proc = subprocess.Popen(
[
sys.executable, "-m", "vllm.entrypoints.openai.api_server",
*cli_args
],
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
)
self._wait_for_server(url=wait_url, timeout=wait_timeout)
def ready(self):
return True
def _wait_for_server(self, *, url: str, timeout: float):
# run health check
start = time.time()
while True:
try:
if requests.get(url).status_code == 200:
break
except Exception as err:
if self.proc.poll() is not None:
raise RuntimeError(
"Server exited unexpectedly.") from err
time.sleep(0.5)
if time.time() - start > timeout:
raise RuntimeError(
"Server failed to start in time.") from err
def __del__(self):
if hasattr(self, "proc"):
self.proc.terminate()
def __init__(self, cli_args: List[str], *, auto_port: bool = True) -> None:
if auto_port:
if "-p" in cli_args or "--port" in cli_args:
raise ValueError("You have manually specified the port"
"when `auto_port=True`.")
cli_args = cli_args + ["--port", str(get_open_port())]
parser = make_arg_parser()
args = parser.parse_args(cli_args)
self.host = str(args.host or 'localhost')
self.port = int(args.port)
self._runner = self._RemoteRunner.remote(
cli_args,
wait_url=self.url_for("health"),
wait_timeout=self.MAX_SERVER_START_WAIT_S)
self._wait_until_ready()
@property
def url_root(self) -> str:
return f"http://{self.host}:{self.port}"
def url_for(self, *parts: str) -> str:
return self.url_root + "/" + "/".join(parts)
def _wait_until_ready(self) -> None:
ray.get(self._runner.ready.remote())
def get_client(self):
return openai.OpenAI(
base_url=self.url_for("v1"),
api_key=self.DUMMY_API_KEY,
)
self._wait_for_server()
def ready(self):
return True
def _wait_for_server(self):
# run health check
start = time.time()
while True:
try:
if requests.get(
"http://localhost:8000/health").status_code == 200:
break
except Exception as err:
if self.proc.poll() is not None:
raise RuntimeError("Server exited unexpectedly.") from err
time.sleep(0.5)
if time.time() - start > self.MAX_SERVER_START_WAIT_S:
raise RuntimeError(
"Server failed to start in time.") from err
def __del__(self):
if hasattr(self, "proc"):
self.proc.terminate()
def get_async_client(self):
return openai.AsyncOpenAI(
base_url=self.url_for("v1"),
api_key=self.DUMMY_API_KEY,
)
def init_test_distributed_environment(