[Frontend] Consolidate tokenizer init code (#26276)

Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
Cyrus Leung
2025-10-06 17:34:52 +08:00
committed by GitHub
parent 77c95f72f7
commit 391612e78b
8 changed files with 46 additions and 70 deletions

View File

@ -7,7 +7,6 @@ from vllm.config import ModelConfig
from vllm.inputs import zip_enc_dec_prompts
from vllm.inputs.parse import parse_raw_prompts
from vllm.inputs.preprocess import InputPreprocessor
from vllm.transformers_utils.tokenizer import init_tokenizer_from_configs
pytestmark = pytest.mark.cpu_test
@ -107,8 +106,7 @@ def test_zip_enc_dec_prompts(mm_processor_kwargs, expected_mm_kwargs):
)
def test_preprocessor_text_no_mm_inputs(model_id, prompt):
model_config = ModelConfig(model=model_id)
tokenizer = init_tokenizer_from_configs(model_config)
input_preprocessor = InputPreprocessor(model_config, tokenizer)
input_preprocessor = InputPreprocessor(model_config)
with pytest.raises(ValueError, match="does not support multimodal inputs"):
input_preprocessor.preprocess(prompt)
@ -129,8 +127,8 @@ def test_preprocessor_text_no_mm_inputs(model_id, prompt):
)
def test_preprocessor_always_mm_code_path(model_id, prompt):
model_config = ModelConfig(model=model_id)
tokenizer = init_tokenizer_from_configs(model_config)
input_preprocessor = InputPreprocessor(model_config, tokenizer)
input_preprocessor = InputPreprocessor(model_config)
tokenizer = input_preprocessor.tokenizer
# HF processor adds sep token
sep_token_id = tokenizer.vocab[tokenizer.sep_token]

View File

@ -65,9 +65,7 @@ def _mk_processor(
device_config=DeviceConfig(device="cpu"),
)
# Pass tokenizer=None; InputPreprocessor handles None when
# skip_tokenizer_init is True.
return Processor(vllm_config, tokenizer=None) # type: ignore[arg-type]
return Processor(vllm_config)
def test_multi_modal_uuids_length_mismatch_raises(monkeypatch):

View File

@ -74,7 +74,6 @@ from vllm.transformers_utils.tokenizer import (
AnyTokenizer,
MistralTokenizer,
get_cached_tokenizer,
init_tokenizer_from_configs,
)
from vllm.usage.usage_lib import UsageContext
from vllm.utils import Counter, Device, as_iter, is_list_of
@ -367,11 +366,8 @@ class LLM:
def _get_processor(self) -> Processor:
if not hasattr(self, "_processor"):
vllm_config = self.llm_engine.vllm_config
if self.model_config.skip_tokenizer_init:
tokenizer = None
else:
tokenizer = init_tokenizer_from_configs(self.model_config)
self._processor = Processor(vllm_config, tokenizer)
self._processor = Processor(vllm_config)
return self._processor
def get_default_sampling_params(self) -> SamplingParams:

View File

@ -16,7 +16,6 @@ from starlette.datastructures import Headers
from typing_extensions import TypeIs
from vllm.entrypoints.utils import _validate_truncation_size
from vllm.transformers_utils.tokenizer import init_tokenizer_from_configs
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.processor import Processor
@ -272,11 +271,8 @@ class OpenAIServing:
async def _get_processor(self) -> Processor:
if not hasattr(self, "_processor"):
vllm_config = await self.engine_client.get_vllm_config()
if self.model_config.skip_tokenizer_init:
tokenizer = None
else:
tokenizer = init_tokenizer_from_configs(self.model_config)
self._processor = Processor(vllm_config, tokenizer)
self._processor = Processor(vllm_config)
return self._processor
def _get_renderer(self, tokenizer: Optional[AnyTokenizer]) -> BaseRenderer:

View File

@ -17,7 +17,8 @@ from vllm.multimodal.inputs import (
MultiModalUUIDDict,
)
from vllm.multimodal.processing import BaseMultiModalProcessor
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.transformers_utils.tokenizer import AnyTokenizer, init_tokenizer_from_configs
from vllm.utils.jsontree import json_iter_leaves
from .data import (
DecoderOnlyInputs,
@ -44,17 +45,20 @@ class InputPreprocessor:
def __init__(
self,
model_config: ModelConfig,
tokenizer: Optional[AnyTokenizer],
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
mm_processor_cache: Optional[BaseMultiModalProcessorCache] = None,
) -> None:
super().__init__()
self.model_config = model_config
self.tokenizer = tokenizer
self.mm_registry = mm_registry
self.mm_processor_cache = mm_processor_cache
if model_config.skip_tokenizer_init:
self.tokenizer = None
else:
self.tokenizer = init_tokenizer_from_configs(model_config)
def get_tokenizer(self) -> AnyTokenizer:
if self.tokenizer is None:
raise ValueError(
@ -273,7 +277,10 @@ class InputPreprocessor:
mm_hashes = mm_input["mm_hashes"]
# Validate that all mm items have a string as their hash
if not contains_only_strings(mm_hashes):
contains_only_strings = all(
isinstance(leaf, str) for leaf in json_iter_leaves(mm_hashes)
)
if not contains_only_strings:
raise ValueError(
f"mm_hashes must contain only strings, got: {mm_hashes}. "
"This is likely due to an incorrect custom implementation of "
@ -693,15 +700,3 @@ class InputPreprocessor:
def clear_cache(self) -> None:
if self.mm_processor_cache is not None:
self.mm_processor_cache.clear_cache()
# Helper function to validate that a nested dictionary contains
# only strings or list of strings as the leaf values.
def contains_only_strings(obj: object):
if isinstance(obj, str):
return True
if isinstance(obj, list):
return all(isinstance(x, str) for x in obj)
if isinstance(obj, dict):
return all(contains_only_strings(v) for v in obj.values())
return False

View File

@ -28,7 +28,7 @@ from vllm.sampling_params import SamplingParams
from vllm.tasks import SupportedTask
from vllm.tracing import init_tracer
from vllm.transformers_utils.config import maybe_register_config_serialize_by_value
from vllm.transformers_utils.tokenizer import AnyTokenizer, init_tokenizer_from_configs
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.usage.usage_lib import UsageContext
from vllm.utils import Device, as_list, cancel_task_threadsafe, cdiv, deprecate_kwargs
from vllm.v1.engine import EngineCoreRequest
@ -104,20 +104,8 @@ class AsyncLLM(EngineClient):
"logger list; enabling logging without default stat loggers"
)
if self.model_config.skip_tokenizer_init:
self.tokenizer = None
else:
# Tokenizer (+ ensure liveness if running in another process).
self.tokenizer = init_tokenizer_from_configs(
model_config=vllm_config.model_config
)
# Processor (converts Inputs --> EngineCoreRequests).
self.processor = Processor(
vllm_config=vllm_config,
tokenizer=self.tokenizer,
mm_registry=mm_registry,
)
self.processor = Processor(vllm_config, mm_registry=mm_registry)
# OutputProcessor (converts EngineCoreOutputs --> RequestOutput).
self.output_processor = OutputProcessor(
@ -257,6 +245,10 @@ class AsyncLLM(EngineClient):
cancel_task_threadsafe(getattr(self, "output_handler", None))
@property
def tokenizer(self) -> Optional[AnyTokenizer]:
return self.processor.tokenizer
async def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
return await self.engine_core.get_supported_tasks_async()

View File

@ -23,7 +23,7 @@ from vllm.pooling_params import PoolingParams
from vllm.sampling_params import SamplingParams
from vllm.tasks import SupportedTask
from vllm.tracing import init_tracer
from vllm.transformers_utils.tokenizer import AnyTokenizer, init_tokenizer_from_configs
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.usage.usage_lib import UsageContext
from vllm.utils import Device
from vllm.v1.engine import EngineCoreRequest
@ -95,18 +95,8 @@ class LLMEngine:
self.dp_group = None
self.should_execute_dummy_batch = False
if self.model_config.skip_tokenizer_init:
self.tokenizer = None
else:
# Tokenizer (+ ensure liveness if running in another process).
self.tokenizer = init_tokenizer_from_configs(
model_config=vllm_config.model_config
)
# Processor (convert Inputs --> EngineCoreRequests)
self.processor = Processor(
vllm_config=vllm_config, tokenizer=self.tokenizer, mm_registry=mm_registry
)
self.processor = Processor(vllm_config, mm_registry=mm_registry)
# OutputProcessor (convert EngineCoreOutputs --> RequestOutput).
self.output_processor = OutputProcessor(
@ -214,6 +204,14 @@ class LLMEngine:
def validate_outputs(cls, outputs, output_type):
return outputs
@property
def tokenizer(self) -> Optional[AnyTokenizer]:
return self.processor.tokenizer
@tokenizer.setter
def tokenizer(self, tokenizer: Optional[AnyTokenizer]) -> None:
self.processor.tokenizer = tokenizer
def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
return self.engine_core.get_supported_tasks()

View File

@ -37,15 +37,13 @@ class Processor:
def __init__(
self,
vllm_config: VllmConfig,
tokenizer: AnyTokenizer,
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
):
) -> None:
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
self.lora_config = vllm_config.lora_config
self.structured_outputs_config = vllm_config.structured_outputs_config
self.tokenizer = tokenizer
self.generation_config_fields = self.model_config.try_get_generation_config()
@ -54,11 +52,18 @@ class Processor:
self.input_preprocessor = InputPreprocessor(
self.model_config,
self.tokenizer,
mm_registry,
mm_processor_cache=self.mm_processor_cache,
)
@property
def tokenizer(self) -> Optional[AnyTokenizer]:
return self.input_preprocessor.tokenizer
@tokenizer.setter
def tokenizer(self, tokenizer: Optional[AnyTokenizer]) -> None:
self.input_preprocessor.tokenizer = tokenizer
def _validate_logprobs(
self,
params: SamplingParams,
@ -511,10 +516,8 @@ class Processor:
else:
raise ValueError(f"The {prompt_type} prompt cannot be empty")
if self.model_config.skip_tokenizer_init:
tokenizer = None
else:
tokenizer = self.tokenizer
tokenizer = self.tokenizer
if tokenizer is not None:
max_input_id = max(prompt_ids or [], default=0)
# NOTE: tokenizer.max_token_id is the tokenizers vocab size while