[feat]: Create interface for model-specific M-RoPE (#24194)

Signed-off-by: AzizCode92 <azizbenothman76@gmail.com>
Signed-off-by: Aziz <azizbenothman76@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
This commit is contained in:
Aziz
2025-09-18 21:18:56 +02:00
committed by GitHub
parent 064cac7bb7
commit 38db529f66
5 changed files with 242 additions and 30 deletions

View File

@ -1,10 +1,11 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from .interfaces import (HasInnerState, SupportsLoRA, SupportsMultiModal,
SupportsPP, SupportsTranscription, SupportsV0Only,
has_inner_state, supports_lora, supports_multimodal,
supports_pp, supports_transcription, supports_v0_only)
from .interfaces import (HasInnerState, SupportsLoRA, SupportsMRoPE,
SupportsMultiModal, SupportsPP, SupportsTranscription,
SupportsV0Only, has_inner_state, supports_lora,
supports_mrope, supports_multimodal, supports_pp,
supports_transcription, supports_v0_only)
from .interfaces_base import (VllmModelForPooling, VllmModelForTextGeneration,
is_pooling_model, is_text_generation_model)
from .registry import ModelRegistry
@ -21,6 +22,8 @@ __all__ = [
"supports_lora",
"SupportsMultiModal",
"supports_multimodal",
"SupportsMRoPE",
"supports_mrope",
"SupportsPP",
"supports_pp",
"SupportsTranscription",

View File

@ -8,6 +8,7 @@ from typing import (TYPE_CHECKING, ClassVar, Literal, Optional, Protocol,
import numpy as np
import torch
from torch import Tensor
from transformers import PretrainedConfig
from transformers.models.whisper.tokenization_whisper import LANGUAGES
from typing_extensions import Self, TypeIs
@ -852,3 +853,70 @@ def supports_eagle3(
model: Union[type[object], object],
) -> Union[TypeIs[type[SupportsEagle3]], TypeIs[SupportsEagle3]]:
return isinstance(model, SupportsEagle3)
@runtime_checkable
class SupportsMRoPE(Protocol):
"""The interface required for all models that support M-RoPE."""
supports_mrope: ClassVar[Literal[True]] = True
"""
A flag that indicates this model supports M-RoPE.
Note:
There is no need to redefine this flag if this class is in the
MRO of your model class.
"""
def get_mrope_input_positions(
self,
input_tokens: list[int],
hf_config: PretrainedConfig,
image_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
video_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
second_per_grid_ts: Optional[list[float]] = None,
context_len: int = 0,
seq_len: Optional[int] = None,
audio_feature_lengths: Optional[torch.Tensor] = None,
use_audio_in_video: bool = False,
) -> tuple[torch.Tensor, int]:
"""
Get M-RoPE input positions and delta value for this specific model.
This method should be implemented by each model that supports M-RoPE
to provide model-specific logic for computing input positions.
Args:
input_tokens: List of input token IDs
hf_config: HuggingFace model configuration
image_grid_thw: Image grid dimensions (t, h, w)
video_grid_thw: Video grid dimensions (t, h, w)
second_per_grid_ts: Seconds per grid timestep for videos
context_len: Context length
seq_len: Sequence length
audio_feature_lengths: Audio feature lengths for multimodal models
use_audio_in_video: Whether to use audio in video for interleaving
Returns:
Tuple of (llm_positions, mrope_position_delta)
- llm_positions: Tensor of shape [3, num_tokens]
with T/H/W positions
- mrope_position_delta: Delta for position calculations
"""
...
@overload
def supports_mrope(model: type[object]) -> TypeIs[type[SupportsMRoPE]]:
...
@overload
def supports_mrope(model: object) -> TypeIs[SupportsMRoPE]:
...
def supports_mrope(
model: Union[type[object], object],
) -> Union[TypeIs[type[SupportsMRoPE]], TypeIs[SupportsMRoPE]]:
return isinstance(model, SupportsMRoPE)

View File

@ -32,7 +32,7 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import AutoConfig, BatchFeature
from transformers import AutoConfig, BatchFeature, PretrainedConfig
from transformers.models.qwen2_vl import (Qwen2VLImageProcessor,
Qwen2VLProcessor)
from transformers.models.qwen2_vl.configuration_qwen2_vl import (
@ -73,7 +73,7 @@ from vllm.transformers_utils.config import uses_mrope
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
from .interfaces import (MultiModalEmbeddings, SupportsLoRA, SupportsMRoPE,
SupportsMultiModal, SupportsPP)
from .utils import (AutoWeightsLoader, WeightsMapper,
init_vllm_registered_model, maybe_prefix,
@ -1096,7 +1096,7 @@ class Qwen2VLMultiModalProcessor(BaseMultiModalProcessor[Qwen2VLProcessingInfo]
info=Qwen2VLProcessingInfo,
dummy_inputs=Qwen2VLDummyInputsBuilder)
class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsLoRA, SupportsPP):
SupportsLoRA, SupportsPP, SupportsMRoPE):
# To ensure correct weight loading and mapping.
hf_to_vllm_mapper = WeightsMapper(
@ -1109,6 +1109,118 @@ class Qwen2VLForConditionalGeneration(nn.Module, SupportsMultiModal,
"model.": "language_model.model.",
})
def get_mrope_input_positions(
self,
input_tokens: list[int],
hf_config: PretrainedConfig,
image_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
video_grid_thw: Optional[Union[list[list[int]], torch.Tensor]],
second_per_grid_ts: Optional[list[float]] = None,
context_len: int = 0,
seq_len: Optional[int] = None,
audio_feature_lengths: Optional[torch.Tensor] = None,
use_audio_in_video: bool = False,
) -> tuple[torch.Tensor, int]:
"""Get M-RoPE input positions for Qwen2-VL model."""
if image_grid_thw is None:
image_grid_thw = []
if video_grid_thw is None:
video_grid_thw = []
if second_per_grid_ts is None:
second_per_grid_ts = []
image_token_id = hf_config.image_token_id
video_token_id = hf_config.video_token_id
vision_start_token_id = hf_config.vision_start_token_id
spatial_merge_size = hf_config.vision_config.spatial_merge_size
tokens_per_second = getattr(hf_config.vision_config,
"tokens_per_second", 1.0)
input_tokens_tensor = torch.tensor(input_tokens)
vision_start_indices = torch.argwhere(
input_tokens_tensor == vision_start_token_id).squeeze(1)
vision_tokens = input_tokens_tensor[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
image_index, video_index = 0, 0
for _ in range(image_nums + video_nums):
video_second_per_grid_t = 0.0
if remain_images > 0:
try:
ed_image = input_tokens.index(image_token_id, st)
except ValueError:
ed_image = len(input_tokens) + 1
else:
ed_image = len(input_tokens) + 1
if remain_videos > 0:
try:
ed_video = input_tokens.index(video_token_id, st)
except ValueError:
ed_video = len(input_tokens) + 1
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (
image_grid_thw[image_index][0],
image_grid_thw[image_index][1],
image_grid_thw[image_index][2],
)
image_index += 1
remain_images -= 1
ed = ed_image
else:
t, h, w = (
video_grid_thw[video_index][0],
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
video_second_per_grid_t = 1.0
if second_per_grid_ts:
video_second_per_grid_t = second_per_grid_ts[video_index]
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = \
t, h // spatial_merge_size, w // spatial_merge_size
text_len = ed - st
st_idx = llm_pos_ids_list[-1].max() + 1 if len(
llm_pos_ids_list) > 0 else 0
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
t_index = (torch.arange(llm_grid_t).view(-1, 1).expand(
-1, llm_grid_h * llm_grid_w) * video_second_per_grid_t *
tokens_per_second).long().flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = llm_pos_ids_list[-1].max() + 1 if len(
llm_pos_ids_list) > 0 else 0
text_len = len(input_tokens) - st
llm_pos_ids_list.append(
torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
mrope_position_delta = (llm_positions.max() + 1 -
len(input_tokens)).item()
llm_positions = llm_positions[:, context_len:seq_len]
return llm_positions, mrope_position_delta
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
if modality.startswith("image"):

View File

@ -42,6 +42,7 @@ from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
from vllm.model_executor.model_loader import TensorizerLoader, get_model_loader
from vllm.model_executor.models.interfaces import (is_mixture_of_experts,
supports_eagle3,
supports_mrope,
supports_transcription)
from vllm.model_executor.models.interfaces_base import (
VllmModelForPooling, is_pooling_model, is_text_generation_model)
@ -730,16 +731,28 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
if mm_input.get("use_audio_in_video") is True:
use_audio_in_video = True
req_state.mrope_positions, req_state.mrope_position_delta = \
MRotaryEmbedding.get_input_positions_tensor(
req_state.prompt_token_ids,
hf_config=self.model_config.hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
audio_feature_lengths=audio_feature_lengths,
use_audio_in_video=use_audio_in_video,
)
if supports_mrope(self.model):
req_state.mrope_positions, req_state.mrope_position_delta = \
self.model.get_mrope_input_positions(
req_state.prompt_token_ids,
hf_config=self.model_config.hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
audio_feature_lengths=audio_feature_lengths,
use_audio_in_video=use_audio_in_video,
)
else:
req_state.mrope_positions, req_state.mrope_position_delta = \
MRotaryEmbedding.get_input_positions_tensor(
req_state.prompt_token_ids,
hf_config=self.model_config.hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
audio_feature_lengths=audio_feature_lengths,
use_audio_in_video=use_audio_in_video,
)
def _extract_mm_kwargs(
self,

View File

@ -41,7 +41,8 @@ from vllm.model_executor.layers.sampler import (Sampler, SamplerOutput,
get_sampler)
from vllm.model_executor.model_loader import get_model
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
from vllm.model_executor.models import supports_lora, supports_multimodal
from vllm.model_executor.models import (supports_lora, supports_mrope,
supports_multimodal)
from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
MultiModalKwargs, MultiModalPlaceholderMap,
@ -670,18 +671,33 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
inter_data.seq_ids[seq_idx]]
token_ids = seq_data.get_token_ids()
mrope_input_positions, mrope_position_delta = \
MRotaryEmbedding.get_input_positions(
token_ids,
hf_config=hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
context_len=inter_data.context_lens[seq_idx],
seq_len=inter_data.seq_lens[seq_idx],
audio_feature_lengths=audio_feature_lengths,
use_audio_in_video=use_audio_in_video,
)
if supports_mrope(self.runner.model):
mrope_input_positions, mrope_position_delta = \
self.runner.model.get_mrope_input_positions(
token_ids,
hf_config=hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
context_len=inter_data.context_lens[seq_idx],
seq_len=inter_data.seq_lens[seq_idx],
audio_feature_lengths=audio_feature_lengths,
use_audio_in_video=use_audio_in_video,
)
mrope_input_positions = mrope_input_positions.tolist()
else:
mrope_input_positions, mrope_position_delta = \
MRotaryEmbedding.get_input_positions(
token_ids,
hf_config=hf_config,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
context_len=inter_data.context_lens[seq_idx],
seq_len=inter_data.seq_lens[seq_idx],
audio_feature_lengths=audio_feature_lengths,
use_audio_in_video=use_audio_in_video,
)
seq_data.mrope_position_delta = mrope_position_delta
inter_data.mrope_input_positions[