mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
Improve the output precision of embedding models (#19092)
This commit is contained in:
@ -56,14 +56,10 @@ def correctness_test_embed_models(hf_runner,
|
||||
max_model_len=None,
|
||||
**vllm_extra_kwargs) as vllm_model:
|
||||
vllm_outputs = vllm_model.encode(example_prompts)
|
||||
vllm_dtype = vllm_model.model.llm_engine.model_config.dtype
|
||||
model_dtype = getattr(
|
||||
vllm_model.model.llm_engine.model_config.hf_config, "torch_dtype",
|
||||
vllm_dtype)
|
||||
|
||||
with hf_runner(
|
||||
model_info.name,
|
||||
dtype=model_dtype,
|
||||
dtype="float32",
|
||||
is_sentence_transformer=True,
|
||||
) as hf_model:
|
||||
|
||||
|
@ -7,7 +7,6 @@ import numpy as np
|
||||
import pytest
|
||||
|
||||
from tests.models.utils import EmbedModelInfo
|
||||
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
|
||||
|
||||
# Most models on the STS12 task (See #17175):
|
||||
# - Model implementation and minor changes in tensor dtype
|
||||
@ -104,17 +103,18 @@ def mteb_test_embed_models(hf_runner,
|
||||
MTEB_EMBED_TASKS)
|
||||
vllm_dtype = vllm_model.model.llm_engine.model_config.dtype
|
||||
|
||||
with set_default_torch_dtype(vllm_dtype) and hf_runner(
|
||||
model_info.name, is_sentence_transformer=True,
|
||||
dtype=vllm_dtype) as hf_model:
|
||||
with hf_runner(model_info.name,
|
||||
is_sentence_transformer=True,
|
||||
dtype="float32") as hf_model:
|
||||
|
||||
if hf_model_callback is not None:
|
||||
hf_model_callback(hf_model)
|
||||
|
||||
st_main_score = run_mteb_embed_task(hf_model, MTEB_EMBED_TASKS)
|
||||
st_dtype = next(hf_model.model.parameters()).dtype
|
||||
|
||||
print("VLLM:", vllm_main_score)
|
||||
print("SentenceTransformers:", st_main_score)
|
||||
print("VLLM:", vllm_dtype, vllm_main_score)
|
||||
print("SentenceTransformers:", st_dtype, st_main_score)
|
||||
print("Difference:", st_main_score - vllm_main_score)
|
||||
|
||||
assert st_main_score == pytest.approx(vllm_main_score, abs=MTEB_EMBED_TOL)
|
||||
|
@ -11,27 +11,21 @@ MODELS = [
|
||||
########## BertModel
|
||||
EmbedModelInfo("thenlper/gte-large",
|
||||
architecture="BertModel",
|
||||
dtype="float32",
|
||||
enable_test=True),
|
||||
EmbedModelInfo("thenlper/gte-base",
|
||||
architecture="BertModel",
|
||||
dtype="float32",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("thenlper/gte-small",
|
||||
architecture="BertModel",
|
||||
dtype="float32",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("thenlper/gte-large-zh",
|
||||
architecture="BertModel",
|
||||
dtype="float32",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("thenlper/gte-base-zh",
|
||||
architecture="BertModel",
|
||||
dtype="float32",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("thenlper/gte-small-zh",
|
||||
architecture="BertModel",
|
||||
dtype="float32",
|
||||
enable_test=False),
|
||||
########### NewModel
|
||||
EmbedModelInfo("Alibaba-NLP/gte-multilingual-base",
|
||||
@ -46,7 +40,6 @@ MODELS = [
|
||||
########### Qwen2ForCausalLM
|
||||
EmbedModelInfo("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
||||
architecture="Qwen2ForCausalLM",
|
||||
dtype="float32",
|
||||
enable_test=True),
|
||||
########## ModernBertModel
|
||||
EmbedModelInfo("Alibaba-NLP/gte-modernbert-base",
|
||||
|
46
tests/models/language/pooling/test_intfloat.py
Normal file
46
tests/models/language/pooling/test_intfloat.py
Normal file
@ -0,0 +1,46 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import pytest
|
||||
|
||||
from ...utils import EmbedModelInfo
|
||||
from .embed_utils import correctness_test_embed_models
|
||||
from .mteb_utils import mteb_test_embed_models
|
||||
|
||||
MODELS = [
|
||||
########## BertModel
|
||||
EmbedModelInfo("intfloat/e5-small",
|
||||
architecture="BertModel",
|
||||
enable_test=True),
|
||||
EmbedModelInfo("intfloat/e5-base",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("intfloat/e5-large",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("intfloat/multilingual-e5-small",
|
||||
architecture="BertModel",
|
||||
enable_test=False),
|
||||
########## XLMRobertaModel
|
||||
EmbedModelInfo("intfloat/multilingual-e5-base",
|
||||
architecture="XLMRobertaModel",
|
||||
enable_test=True),
|
||||
EmbedModelInfo("intfloat/multilingual-e5-large",
|
||||
architecture="XLMRobertaModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("intfloat/multilingual-e5-large-instruct",
|
||||
architecture="XLMRobertaModel",
|
||||
enable_test=False),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", MODELS)
|
||||
def test_embed_models_mteb(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo) -> None:
|
||||
mteb_test_embed_models(hf_runner, vllm_runner, model_info)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_info", MODELS)
|
||||
def test_embed_models_correctness(hf_runner, vllm_runner,
|
||||
model_info: EmbedModelInfo,
|
||||
example_prompts) -> None:
|
||||
correctness_test_embed_models(hf_runner, vllm_runner, model_info,
|
||||
example_prompts)
|
@ -32,8 +32,7 @@ TEXTS_2 = [
|
||||
EMBEDDING_MODELS = [
|
||||
EmbedModelInfo("jinaai/jina-embeddings-v3",
|
||||
architecture="XLMRobertaModel",
|
||||
is_matryoshka=True,
|
||||
dtype="float32")
|
||||
is_matryoshka=True)
|
||||
]
|
||||
|
||||
|
||||
|
@ -9,18 +9,15 @@ from .mteb_utils import mteb_test_embed_models
|
||||
MODELS = [
|
||||
EmbedModelInfo("nomic-ai/nomic-embed-text-v1",
|
||||
architecture="NomicBertModel",
|
||||
dtype="float32",
|
||||
enable_test=True),
|
||||
EmbedModelInfo("nomic-ai/nomic-embed-text-v1.5",
|
||||
architecture="NomicBertModel",
|
||||
dtype="float32",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("nomic-ai/CodeRankEmbed",
|
||||
architecture="NomicBertModel",
|
||||
enable_test=False),
|
||||
EmbedModelInfo("nomic-ai/nomic-embed-text-v2-moe",
|
||||
architecture="NomicBertModel",
|
||||
dtype="float32",
|
||||
enable_test=True)
|
||||
]
|
||||
|
||||
|
@ -414,10 +414,15 @@ class BertEmbeddingModel(nn.Module, SupportsV0Only, SupportsQuant):
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
return self.model(input_ids=input_ids,
|
||||
position_ids=positions,
|
||||
inputs_embeds=inputs_embeds,
|
||||
intermediate_tensors=intermediate_tensors)
|
||||
hidden_states = self.model(input_ids=input_ids,
|
||||
position_ids=positions,
|
||||
inputs_embeds=inputs_embeds,
|
||||
intermediate_tensors=intermediate_tensors)
|
||||
|
||||
# convert the embedding output to float32,
|
||||
# otherwise precision will be lost significantly
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
return hidden_states
|
||||
|
||||
def pooler(
|
||||
self,
|
||||
|
@ -432,7 +432,12 @@ class BertWithRope(nn.Module, SupportsV0Only, SupportsQuant):
|
||||
else:
|
||||
hidden_states = self.embeddings(input_ids=input_ids,
|
||||
token_type_ids=token_type_ids)
|
||||
return self.encoder(positions, hidden_states)
|
||||
hidden_states = self.encoder(positions, hidden_states)
|
||||
|
||||
# convert the embedding output to float32,
|
||||
# otherwise precision will be lost significantly
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
return hidden_states
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
|
Reference in New Issue
Block a user