mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Core] avoid too many cuda context by caching p2p test (#4021)
This commit is contained in:
@ -42,12 +42,17 @@ def init_custom_ar() -> None:
|
||||
" disable_custom_all_reduce=True explicitly.", world_size,
|
||||
str(_SUPPORTED_WORLD_SIZES))
|
||||
return
|
||||
if not _can_p2p(rank, world_size):
|
||||
num_dev = torch.cuda.device_count()
|
||||
# note: num dev can be larger than world_size if we're only using
|
||||
# first few GPUs
|
||||
if num_dev < world_size:
|
||||
logger.warn(
|
||||
"Custom allreduce is disabled because your platform lacks GPU P2P"
|
||||
" capability or P2P test failed. To silence this warning, specify"
|
||||
" disable_custom_all_reduce=True explicitly.")
|
||||
return
|
||||
"Cannot test GPU P2P because not all GPUs are visible to the "
|
||||
"current process. This might be the case if 'CUDA_VISIBLE_DEVICES'"
|
||||
" is set.")
|
||||
return False
|
||||
# test nvlink first, this will filter out most of the cases
|
||||
# where custom allreduce is not supported
|
||||
full_nvlink = _is_full_nvlink(rank, world_size)
|
||||
if world_size > 2 and not full_nvlink:
|
||||
logger.warn(
|
||||
@ -55,6 +60,15 @@ def init_custom_ar() -> None:
|
||||
" than two PCIe-only GPUs. To silence this warning, specify"
|
||||
" disable_custom_all_reduce=True explicitly.")
|
||||
return
|
||||
# test P2P capability
|
||||
# this is expensive to compute at the first time
|
||||
# then we cache the result
|
||||
if not _can_p2p(rank, world_size):
|
||||
logger.warn(
|
||||
"Custom allreduce is disabled because your platform lacks GPU P2P"
|
||||
" capability or P2P test failed. To silence this warning, specify"
|
||||
" disable_custom_all_reduce=True explicitly.")
|
||||
return
|
||||
_CA_HANDLE = CustomAllreduce(rank, world_size, full_nvlink)
|
||||
|
||||
|
||||
@ -143,40 +157,15 @@ def _is_full_nvlink(rank, world_size):
|
||||
|
||||
|
||||
def _can_p2p(rank: int, world_size: int) -> bool:
|
||||
num_dev = torch.cuda.device_count()
|
||||
# note: num dev can be larger than world_size if we're only using
|
||||
# first few GPUs
|
||||
if num_dev < world_size:
|
||||
logger.warn(
|
||||
"Cannot test GPU P2P because not all GPUs are visible to the "
|
||||
"current process. This might be the case if 'CUDA_VISIBLE_DEVICES'"
|
||||
" is set.")
|
||||
return False
|
||||
from vllm.distributed.utils import gpu_p2p_access_check
|
||||
for i in range(world_size):
|
||||
if i == rank:
|
||||
continue
|
||||
if not torch.cuda.can_device_access_peer(rank, i):
|
||||
return False
|
||||
# on some platforms, P2P support might be buggy and we need
|
||||
# additional checks. See also:
|
||||
# https://github.com/vllm-project/vllm/issues/2728
|
||||
if not _can_actually_p2p(rank, i):
|
||||
if not gpu_p2p_access_check(rank, i):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
# code partly borrowed from
|
||||
# https://github.com/turboderp/exllamav2/blob/1c67f97f3d2a968605a9c31ab791a05c85bb7879/exllamav2/compat.py#L10
|
||||
# License: MIT
|
||||
def _can_actually_p2p(idx_a, idx_b):
|
||||
dev_i = f"cuda:{idx_a}"
|
||||
dev_j = f"cuda:{idx_b}"
|
||||
a = torch.randn(5, device=dev_i) + 123.0
|
||||
b = a.to(dev_j)
|
||||
c = b.to(dev_i)
|
||||
return torch.all(a == c)
|
||||
|
||||
|
||||
class CustomAllreduce:
|
||||
|
||||
# max_size: max supported allreduce size
|
||||
|
@ -41,6 +41,13 @@ _CPU_WORLD_GROUP = None
|
||||
# source rank when broadcasting from the first or last pipeline stage.
|
||||
_PIPELINE_GLOBAL_RANKS = None
|
||||
|
||||
_LOCAL_RANK = -1
|
||||
|
||||
|
||||
def get_local_rank():
|
||||
global _LOCAL_RANK
|
||||
return _LOCAL_RANK
|
||||
|
||||
|
||||
def init_distributed_environment(
|
||||
world_size: int = -1,
|
||||
@ -66,6 +73,8 @@ def init_distributed_environment(
|
||||
ranks = list(range(torch.distributed.get_world_size()))
|
||||
_CPU_WORLD_GROUP = torch.distributed.new_group(ranks=ranks,
|
||||
backend="gloo")
|
||||
global _LOCAL_RANK
|
||||
_LOCAL_RANK = local_rank
|
||||
|
||||
|
||||
def initialize_model_parallel(
|
||||
|
@ -2,9 +2,18 @@
|
||||
# Adapted from
|
||||
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/utils.py
|
||||
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
||||
from typing import Sequence
|
||||
import json
|
||||
import os
|
||||
from typing import Dict, Optional, Sequence
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from vllm.logger import init_logger
|
||||
|
||||
from .parallel_state import get_cpu_world_group, get_local_rank
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
def ensure_divisibility(numerator, denominator):
|
||||
@ -46,3 +55,79 @@ def split_tensor_along_last_dim(
|
||||
return tuple(chunk.contiguous() for chunk in tensor_list)
|
||||
|
||||
return tensor_list
|
||||
|
||||
|
||||
# code partly borrowed from
|
||||
# https://github.com/turboderp/exllamav2/blob/1c67f97f3d2a968605a9c31ab791a05c85bb7879/exllamav2/compat.py#L10
|
||||
# License: MIT
|
||||
def _can_actually_p2p(idx_a, idx_b):
|
||||
dev_i = f"cuda:{idx_a}"
|
||||
dev_j = f"cuda:{idx_b}"
|
||||
a = torch.randn(5, device=dev_i) + 123.0
|
||||
b = a.to(dev_j)
|
||||
c = b.to(dev_i)
|
||||
return torch.all(a == c).cpu().item()
|
||||
|
||||
|
||||
# why do we need this cache?
|
||||
# 1. we can have runtime checks for P2P access, where every process checks
|
||||
# P2P access to all other GPUs. Unfortunately, the test might cost many
|
||||
# (world_size * world_size) cuda context, and reduce the memory available
|
||||
# for the model. see https://github.com/vllm-project/vllm/issues/3821
|
||||
# 2. alternatively, we can have a p2p map that is generated by the master
|
||||
# process and broadcasted to all other processes. This still requires
|
||||
# #world_size of cuda context, belonging to the master process, on each GPU.
|
||||
# 3. we can have a cache file, that records the p2p access status. The first
|
||||
# time the master process checks the p2p access, it will generate the cache
|
||||
# file, at the cost of #world_size of cuda context. Later on, all processes
|
||||
# can read the cache file to check the p2p access status without any cost of
|
||||
# additional cuda context.
|
||||
# Note that the cache file is suffixed by the CUDA_VISIBLE_DEVICES, so that we
|
||||
# can have different cache files for different CUDA_VISIBLE_DEVICES settings,
|
||||
# e.g. used by different vllm engines. The device id in the cache file is a
|
||||
# **local** device id, i.e. from 0 to num_dev-1, where num_dev is the number
|
||||
# of visible devices in the vllm engine.
|
||||
_gpu_p2p_access_cache: Optional[Dict[str, bool]] = None
|
||||
|
||||
|
||||
def gpu_p2p_access_check(i: int, j: int) -> bool:
|
||||
"""Check if GPU i can access GPU j."""
|
||||
|
||||
# if the cache variable is already calculated,
|
||||
# read from the cache instead of checking it again
|
||||
global _gpu_p2p_access_cache
|
||||
if _gpu_p2p_access_cache is not None:
|
||||
return _gpu_p2p_access_cache[f"{i}->{j}"]
|
||||
|
||||
is_distributed = dist.is_initialized()
|
||||
|
||||
num_dev = torch.cuda.device_count()
|
||||
cuda_visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES", None)
|
||||
if cuda_visible_devices is None:
|
||||
cuda_visible_devices = ",".join(str(i) for i in range(num_dev))
|
||||
path = os.path.expanduser(
|
||||
f"~/.config/vllm/gpu_p2p_access_cache_for_{cuda_visible_devices}.json")
|
||||
os.makedirs(os.path.dirname(path), exist_ok=True)
|
||||
if (not is_distributed or get_local_rank() == 0) \
|
||||
and (not os.path.exists(path)):
|
||||
# only the local master process (with local_rank == 0) can
|
||||
# enter this block to calculate the cache
|
||||
logger.info(f"generating GPU P2P access cache for in {path}")
|
||||
cache = {}
|
||||
for _i in range(num_dev):
|
||||
for _j in range(num_dev):
|
||||
# on some platforms, P2P support might be buggy and we need
|
||||
# additional checks. See also:
|
||||
# https://github.com/vllm-project/vllm/issues/2728
|
||||
cache[f"{_i}->{_j}"] = torch.cuda.can_device_access_peer(
|
||||
_i, _j) and _can_actually_p2p(_i, _j)
|
||||
with open(path, "w") as f:
|
||||
json.dump(cache, f, indent=4)
|
||||
if is_distributed:
|
||||
cpu_world_group = get_cpu_world_group()
|
||||
dist.barrier(cpu_world_group)
|
||||
logger.info(f"reading GPU P2P access cache from {path}")
|
||||
with open(path, "r") as f:
|
||||
cache = json.load(f)
|
||||
_gpu_p2p_access_cache = cache
|
||||
return _gpu_p2p_access_cache[f"{i}->{j}"]
|
||||
|
Reference in New Issue
Block a user