Update PyTorch to 2.7.0 (#16859)

This commit is contained in:
Huy Do
2025-04-29 19:08:04 -07:00
committed by GitHub
parent 1c2bc7ead0
commit 2c4f59afc3
18 changed files with 102 additions and 77 deletions

View File

@ -1,20 +1,20 @@
steps:
- label: "Build wheel - CUDA 12.4"
- label: "Build wheel - CUDA 12.8"
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
env:
DOCKER_BUILDKIT: "1"
- label: "Build wheel - CUDA 12.1"
- label: "Build wheel - CUDA 12.6"
agents:
queue: cpu_queue_postmerge
commands:
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.1.0 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.6.3 --tag vllm-ci:build-image --target build --progress plain -f docker/Dockerfile ."
- "mkdir artifacts"
- "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'"
- "bash .buildkite/scripts/upload-wheels.sh"
@ -48,7 +48,7 @@ steps:
queue: cpu_queue_postmerge
commands:
- "aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/q9t5s3a7"
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.4.0 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "DOCKER_BUILDKIT=1 docker build --build-arg max_jobs=16 --build-arg USE_SCCACHE=1 --build-arg GIT_REPO_CHECK=1 --build-arg CUDA_VERSION=12.8.1 --tag public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT --target vllm-openai --progress plain -f docker/Dockerfile ."
- "docker push public.ecr.aws/q9t5s3a7/vllm-release-repo:$BUILDKITE_COMMIT"
- label: "Build and publish TPU release image"

View File

@ -50,11 +50,11 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/$BUILDKITE_COMMIT/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu121"* ]]; then
# if $normal_wheel matches cu121, do not upload the index.html
echo "Skipping index files for cu121 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
else
# only upload index.html for cu124 wheels (default wheels)
# only upload index.html for cu128 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/$BUILDKITE_COMMIT/vllm/index.html"
aws s3 cp "s3://vllm-wheels/nightly/index.html" "s3://vllm-wheels/$BUILDKITE_COMMIT/index.html"
fi
@ -66,12 +66,12 @@ aws s3 cp "$normal_wheel" "s3://vllm-wheels/nightly/"
if [[ $normal_wheel == *"cu118"* ]]; then
# if $normal_wheel matches cu118, do not upload the index.html
echo "Skipping index files for cu118 wheels"
elif [[ $normal_wheel == *"cu121"* ]]; then
# if $normal_wheel matches cu121, do not upload the index.html
echo "Skipping index files for cu121 wheels"
elif [[ $normal_wheel == *"cu126"* ]]; then
# if $normal_wheel matches cu126, do not upload the index.html
echo "Skipping index files for cu126 wheels"
else
# only upload index.html for cu124 wheels (default wheels)
# only upload index.html for cu128 wheels (default wheels)
aws s3 cp index.html "s3://vllm-wheels/nightly/vllm/index.html"
fi
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"
aws s3 cp "$wheel" "s3://vllm-wheels/$version/"

View File

@ -455,7 +455,7 @@ steps:
- tests/models/encoder_decoder/language
commands:
# Install causal-conv1d for plamo2 models here, as it is not compatible with pip-compile.
- pip install causal-conv1d
- pip install 'git+https://github.com/Dao-AILab/causal-conv1d@v1.5.0.post8'
- pytest -v -s models/decoder_only/language -m 'core_model or quant_model'
- pytest -v -s models/embedding/language -m core_model

View File

@ -66,7 +66,7 @@ jobs:
export AWS_SECRET_ACCESS_KEY=minioadmin
sleep 30 && kubectl -n ns-vllm logs -f "$(kubectl -n ns-vllm get pods | awk '/deployment/ {print $1;exit}')" &
helm install --wait --wait-for-jobs --timeout 5m0s --debug --create-namespace --namespace=ns-vllm test-vllm examples/online_serving/chart-helm -f examples/online_serving/chart-helm/values.yaml --set secrets.s3endpoint=http://minio:9000 --set secrets.s3bucketname=testbucket --set secrets.s3accesskeyid=$AWS_ACCESS_KEY_ID --set secrets.s3accesskey=$AWS_SECRET_ACCESS_KEY --set resources.requests.cpu=1 --set resources.requests.memory=4Gi --set resources.limits.cpu=2 --set resources.limits.memory=5Gi --set image.env[0].name=VLLM_CPU_KVCACHE_SPACE --set image.env[1].name=VLLM_LOGGING_LEVEL --set-string image.env[0].value="1" --set-string image.env[1].value="DEBUG" --set-string extraInit.s3modelpath="opt-125m/" --set-string 'resources.limits.nvidia\.com/gpu=0' --set-string 'resources.requests.nvidia\.com/gpu=0' --set-string image.repository="vllm-cpu-env"
- name: curl test
run: |
kubectl -n ns-vllm port-forward service/test-vllm-service 8001:80 &
@ -79,4 +79,4 @@ jobs:
"max_tokens": 7,
"temperature": 0
}'):$CODE"
echo "$CODE"
echo "$CODE"

View File

@ -46,7 +46,7 @@ repos:
rev: 0.6.17
hooks:
- id: pip-compile
args: [requirements/test.in, -o, requirements/test.txt]
args: [requirements/test.in, -o, requirements/test.txt, --index-strategy, unsafe-best-match]
files: ^requirements/test\.(in|txt)$
- repo: local
hooks:

View File

@ -46,8 +46,8 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.6.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.6.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
#
# Try to find python package with an executable that exactly matches

View File

@ -5,11 +5,11 @@
# docs/source/contributing/dockerfile/dockerfile.md and
# docs/source/assets/contributing/dockerfile-stages-dependency.png
ARG CUDA_VERSION=12.4.1
ARG CUDA_VERSION=12.8.1
#################### BASE BUILD IMAGE ####################
# prepare basic build environment
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 AS base
ARG CUDA_VERSION=12.4.1
ARG CUDA_VERSION=12.8.1
ARG PYTHON_VERSION=3.12
ARG TARGETPLATFORM
ENV DEBIAN_FRONTEND=noninteractive
@ -37,6 +37,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Upgrade to GCC 10 to avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92519
# as it was causing spam when compiling the CUTLASS kernels
@ -69,7 +70,8 @@ RUN --mount=type=cache,target=/root/.cache/uv \
COPY requirements/common.txt requirements/common.txt
COPY requirements/cuda.txt requirements/cuda.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/cuda.txt
uv pip install --system -r requirements/cuda.txt \
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
# cuda arch list used by torch
# can be useful for both `dev` and `test`
@ -92,9 +94,11 @@ COPY requirements/build.txt requirements/build.txt
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/build.txt
uv pip install --system -r requirements/build.txt \
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
COPY . .
ARG GIT_REPO_CHECK=0
@ -161,22 +165,25 @@ FROM base as dev
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Workaround for #17068
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
COPY requirements/lint.txt requirements/lint.txt
COPY requirements/test.txt requirements/test.txt
COPY requirements/dev.txt requirements/dev.txt
# Workaround for #17068
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system mamba-ssm==2.2.4 --no-build-isolation
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/dev.txt
uv pip install --system -r requirements/dev.txt \
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
#################### DEV IMAGE ####################
#################### vLLM installation IMAGE ####################
# image with vLLM installed
# TODO: Restore to base image after FlashInfer AOT wheel fixed
FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu22.04 AS vllm-base
ARG CUDA_VERSION=12.4.1
ARG CUDA_VERSION=12.8.1
ARG PYTHON_VERSION=3.12
WORKDIR /vllm-workspace
ENV DEBIAN_FRONTEND=noninteractive
@ -209,6 +216,7 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
@ -229,7 +237,8 @@ RUN --mount=type=cache,target=/root/.cache/uv \
# Install vllm wheel first, so that torch etc will be installed.
RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist \
--mount=type=cache,target=/root/.cache/uv \
uv pip install --system dist/*.whl --verbose
uv pip install --system dist/*.whl --verbose \
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
# If we need to build FlashInfer wheel before its release:
# $ export FLASHINFER_ENABLE_AOT=1
@ -246,19 +255,26 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
RUN --mount=type=cache,target=/root/.cache/uv \
. /etc/environment && \
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then \
uv pip install --system https://github.com/flashinfer-ai/flashinfer/releases/download/v0.2.1.post2/flashinfer_python-0.2.1.post2+cu124torch2.6-cp38-abi3-linux_x86_64.whl ; \
# TESTING: install FlashInfer from source to test 2.7.0 final RC
FLASHINFER_ENABLE_AOT=1 TORCH_CUDA_ARCH_LIST='7.5 8.0 8.6 8.9 9.0+PTX' \
uv pip install --system --no-build-isolation "git+https://github.com/flashinfer-ai/flashinfer@v0.2.2.post1" ; \
fi
COPY examples examples
COPY benchmarks benchmarks
COPY ./vllm/collect_env.py .
RUN --mount=type=cache,target=/root/.cache/uv \
. /etc/environment && \
uv pip list
# Although we build Flashinfer with AOT mode, there's still
# some issues w.r.t. JIT compilation. Therefore we need to
# install build dependencies for JIT compilation.
# TODO: Remove this once FlashInfer AOT wheel is fixed
COPY requirements/build.txt requirements/build.txt
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/build.txt
uv pip install --system -r requirements/build.txt \
--extra-index-url https://download.pytorch.org/whl/cu$(echo $CUDA_VERSION | cut -d. -f1,2 | tr -d '.')
#################### vLLM installation IMAGE ####################
@ -272,11 +288,13 @@ ADD . /vllm-workspace/
# This timeout (in seconds) is necessary when installing some dependencies via uv since it's likely to time out
# Reference: https://github.com/astral-sh/uv/pull/1694
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# install development dependencies (for testing)
# Workaround for #17068
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system mamba-ssm==2.2.4 --no-build-isolation
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/dev.txt

View File

@ -1,6 +1,6 @@
# Installation
vLLM contains pre-compiled C++ and CUDA (12.1) binaries.
vLLM contains pre-compiled C++ and CUDA (12.6) binaries.
## Requirements
@ -23,12 +23,12 @@ Therefore, it is recommended to install vLLM with a **fresh new** environment. I
You can install vLLM using either `pip` or `uv pip`:
```console
# Install vLLM with CUDA 12.4.
# Install vLLM with CUDA 12.6.
pip install vllm # If you are using pip.
uv pip install vllm # If you are using uv.
```
As of now, vLLM's binaries are compiled with CUDA 12.4 and public PyTorch release versions by default. We also provide vLLM binaries compiled with CUDA 12.1, 11.8, and public PyTorch release versions:
As of now, vLLM's binaries are compiled with CUDA 12.6 and public PyTorch release versions by default. We also provide vLLM binaries compiled with CUDA 12.8, 11.8, and public PyTorch release versions:
```console
# Install vLLM with CUDA 11.8.

View File

@ -8,7 +8,7 @@ image:
# -- Image tag
tag: "latest"
# -- Container launch command
command: ["vllm", "serve", "/data/", "--served-model-name", "opt-125m", "--dtype", "bfloat16", "--host", "0.0.0.0", "--port", "8000"]
command: ["vllm", "serve", "/data/", "--served-model-name", "opt-125m", "--dtype", "float32", "--block-size", "16", "--host", "0.0.0.0", "--port", "8000"]
# -- Container port
containerPort: 8000

View File

@ -6,7 +6,7 @@ requires = [
"packaging",
"setuptools>=61",
"setuptools-scm>=8.0",
"torch == 2.6.0",
"torch == 2.7.0",
"wheel",
"jinja2",
]

View File

@ -4,6 +4,6 @@ ninja
packaging
setuptools>=61
setuptools-scm>=8
torch==2.6.0
torch==2.7.0
wheel
jinja2>=3.1.6

View File

@ -2,18 +2,19 @@
-r common.txt
# Dependencies for CPUs
torch==2.6.0+cpu; platform_machine == "x86_64"
torch==2.6.0; platform_system == "Darwin"
torch==2.6.0; platform_machine == "ppc64le" or platform_machine == "aarch64"
--extra-index-url https://download.pytorch.org/whl/cpu
torch==2.7.0+cpu; platform_machine == "x86_64"
torch==2.7.0; platform_system == "Darwin"
torch==2.7.0; platform_machine == "ppc64le" or platform_machine == "aarch64"
torch==2.7.0.dev20250304; platform_machine == "s390x"
# required for the image processor of minicpm-o-2_6, this must be updated alongside torch
torchaudio; platform_machine != "ppc64le" and platform_machine != "s390x"
torchaudio==2.6.0; platform_machine == "ppc64le"
torchaudio==2.7.0; platform_machine == "ppc64le"
# required for the image processor of phi3v, this must be updated alongside torch
torchvision; platform_machine != "ppc64le" and platform_machine != "s390x"
torchvision==0.21.0; platform_machine == "ppc64le"
torchvision==0.22.0; platform_machine == "ppc64le"
datasets # for benchmark scripts
# cpu cannot use triton 3.3.0

View File

@ -6,8 +6,9 @@ numba == 0.61.2; python_version > '3.9'
# Dependencies for NVIDIA GPUs
ray[cgraph]>=2.43.0, !=2.44.* # Ray Compiled Graph, required for pipeline parallelism in V1.
torch==2.6.0
torchaudio==2.6.0
torch==2.7.0
torchaudio==2.7.0
# These must be updated alongside torch
torchvision==0.21.0 # Required for phi3v processor. See https://github.com/pytorch/vision?tab=readme-ov-file#installation for corresponding version
xformers==0.0.29.post2; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch 2.6.0
torchvision==0.22.0 # Required for phi3v processor. See https://github.com/pytorch/vision?tab=readme-ov-file#installation for corresponding version
# https://github.com/facebookresearch/xformers/releases/tag/v0.0.30
xformers==0.0.30; platform_system == 'Linux' and platform_machine == 'x86_64' # Requires PyTorch >= 2.7

View File

@ -2,9 +2,9 @@
-r common.txt
--extra-index-url https://download.pytorch.org/whl/rocm6.2.4
torch==2.6.0
torchvision==0.21.0
torchaudio==2.6.0
torch==2.7.0
torchvision==0.22.0
torchaudio==2.7.0
triton==3.2
cmake>=3.26,<4

View File

@ -23,9 +23,9 @@ sentence-transformers # required for embedding tests
soundfile # required for audio tests
jiwer # required for audio tests
timm # required for internvl test
torch==2.6.0
torchaudio==2.6.0
torchvision==0.21.0
torch==2.7.0
torchaudio==2.7.0
torchvision==0.22.0
transformers_stream_generator # required for qwen-vl test
mamba_ssm # required for plamo2 test
matplotlib # required for qwen-vl test

View File

@ -1,5 +1,5 @@
# This file was autogenerated by uv via the following command:
# uv pip compile requirements/test.in -o requirements/test.txt
# uv pip compile requirements/test.in -o requirements/test.txt --index-strategy unsafe-best-match
absl-py==2.1.0
# via rouge-score
accelerate==1.0.1
@ -274,7 +274,7 @@ mamba-ssm==2.2.4
# via -r requirements/test.in
markdown-it-py==3.0.0
# via rich
markupsafe==3.0.2
markupsafe==3.0.1
# via
# jinja2
# werkzeug
@ -355,39 +355,42 @@ numpy==1.26.4
# transformers
# tritonclient
# vocos
nvidia-cublas-cu12==12.4.5.8
nvidia-cublas-cu12==12.6.4.1
# via
# nvidia-cudnn-cu12
# nvidia-cusolver-cu12
# torch
nvidia-cuda-cupti-cu12==12.4.127
nvidia-cuda-cupti-cu12==12.6.80
# via torch
nvidia-cuda-nvrtc-cu12==12.4.127
nvidia-cuda-nvrtc-cu12==12.6.77
# via torch
nvidia-cuda-runtime-cu12==12.4.127
nvidia-cuda-runtime-cu12==12.6.77
# via torch
nvidia-cudnn-cu12==9.1.0.70
nvidia-cudnn-cu12==9.5.1.17
# via torch
nvidia-cufft-cu12==11.2.1.3
nvidia-cufft-cu12==11.3.0.4
# via torch
nvidia-curand-cu12==10.3.5.147
nvidia-cufile-cu12==1.11.1.6
# via torch
nvidia-cusolver-cu12==11.6.1.9
nvidia-curand-cu12==10.3.7.77
# via torch
nvidia-cusparse-cu12==12.3.1.170
nvidia-cusolver-cu12==11.7.1.2
# via torch
nvidia-cusparse-cu12==12.5.4.2
# via
# nvidia-cusolver-cu12
# torch
nvidia-cusparselt-cu12==0.6.2
nvidia-cusparselt-cu12==0.6.3
# via torch
nvidia-nccl-cu12==2.21.5
nvidia-nccl-cu12==2.26.2
# via torch
nvidia-nvjitlink-cu12==12.4.127
nvidia-nvjitlink-cu12==12.6.85
# via
# nvidia-cufft-cu12
# nvidia-cusolver-cu12
# nvidia-cusparse-cu12
# torch
nvidia-nvtx-cu12==12.4.127
nvidia-nvtx-cu12==12.6.77
# via torch
opencv-python-headless==4.11.0.86
# via
@ -634,6 +637,7 @@ setuptools==75.8.0
# mamba-ssm
# pytablewriter
# torch
# triton
shellingham==1.5.4
# via typer
six==1.16.0
@ -664,7 +668,7 @@ starlette-testclient==0.4.1
# via schemathesis
statsmodels==0.14.4
# via genai-perf
sympy==1.13.1
sympy==1.13.3
# via
# einx
# torch
@ -696,7 +700,7 @@ tomli==2.2.1
# via schemathesis
tomli-w==1.2.0
# via schemathesis
torch==2.6.0
torch==2.7.0
# via
# -r requirements/test.in
# accelerate
@ -714,12 +718,12 @@ torch==2.6.0
# torchvision
# vector-quantize-pytorch
# vocos
torchaudio==2.6.0
torchaudio==2.7.0
# via
# -r requirements/test.in
# encodec
# vocos
torchvision==0.21.0
torchvision==0.22.0
# via
# -r requirements/test.in
# timm
@ -748,7 +752,7 @@ transformers==4.51.3
# transformers-stream-generator
transformers-stream-generator==0.0.5
# via -r requirements/test.in
triton==3.2.0
triton==3.3.0
# via torch
tritonclient==2.51.0
# via

View File

@ -54,7 +54,7 @@ elif (sys.platform.startswith("linux") and torch.version.cuda is None
# fallback to cpu
VLLM_TARGET_DEVICE = "cpu"
MAIN_CUDA_VERSION = "12.4"
MAIN_CUDA_VERSION = "12.8"
def is_sccache_available() -> bool:

View File

@ -5,7 +5,8 @@ from typing import Dict, List, Optional, Tuple
try:
import intel_extension_for_pytorch.llm.modules as ipex_modules
_use_ipex = True
except ImportError:
# AttributeError is to handle a bug in ipex https://github.com/intel/intel-extension-for-pytorch/pull/813
except (ImportError, AttributeError):
_use_ipex = False
import torch