mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Doc] Quark quantization documentation (#15861)
Signed-off-by: chaow <chaow@amd.com>
This commit is contained in:
@ -16,5 +16,6 @@ gptqmodel
|
||||
int4
|
||||
int8
|
||||
fp8
|
||||
quark
|
||||
quantized_kvcache
|
||||
:::
|
||||
|
217
docs/source/features/quantization/quark.md
Normal file
217
docs/source/features/quantization/quark.md
Normal file
@ -0,0 +1,217 @@
|
||||
(quark)=
|
||||
|
||||
# AMD QUARK
|
||||
|
||||
Quantization can effectively reduce memory and bandwidth usage, accelerate computation and improve
|
||||
throughput while with minimal accuracy loss. vLLM can leverage [Quark](https://quark.docs.amd.com/latest/),
|
||||
the flexible and powerful quantization toolkit, to produce performant quantized models to run on AMD GPUs. Quark has specialized support for quantizing large language models with weight,
|
||||
activation and kv-cache quantization and cutting-edge quantization algorithms like
|
||||
AWQ, GPTQ, Rotation and SmoothQuant.
|
||||
|
||||
## Quark Installation
|
||||
|
||||
Before quantizing models, you need to install Quark. The latest release of Quark can be installed with pip:
|
||||
|
||||
```console
|
||||
pip install amd-quark
|
||||
```
|
||||
|
||||
You can refer to [Quark installation guide](https://quark.docs.amd.com/latest/install.html)
|
||||
for more installation details.
|
||||
|
||||
## Quantization Process
|
||||
|
||||
After installing Quark, we will use an example to illustrate how to use Quark.
|
||||
The Quark quantization process can be listed for 5 steps as below:
|
||||
|
||||
1. Load the model
|
||||
2. Prepare the calibration dataloader
|
||||
3. Set the quantization configuration
|
||||
4. Quantize the model and export
|
||||
5. Evaluation in vLLM
|
||||
|
||||
### 1. Load the Model
|
||||
|
||||
Quark uses [Transformers](https://huggingface.co/docs/transformers/en/index)
|
||||
to fetch model and tokenizer.
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
MODEL_ID = "meta-llama/Llama-2-70b-chat-hf"
|
||||
MAX_SEQ_LEN = 512
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
MODEL_ID, device_map="auto", torch_dtype="auto",
|
||||
)
|
||||
model.eval()
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, model_max_length=MAX_SEQ_LEN)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
```
|
||||
|
||||
### 2. Prepare the Calibration Dataloader
|
||||
|
||||
Quark uses the [PyTorch Dataloader](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html)
|
||||
to load calibration data. For more details about how to use calibration datasets efficiently, please refer
|
||||
to [Adding Calibration Datasets](https://quark.docs.amd.com/latest/pytorch/calibration_datasets.html).
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
BATCH_SIZE = 1
|
||||
NUM_CALIBRATION_DATA = 512
|
||||
|
||||
# Load the dataset and get calibration data.
|
||||
dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation")
|
||||
text_data = dataset["text"][:NUM_CALIBRATION_DATA]
|
||||
|
||||
tokenized_outputs = tokenizer(text_data, return_tensors="pt",
|
||||
padding=True, truncation=True, max_length=MAX_SEQ_LEN)
|
||||
calib_dataloader = DataLoader(tokenized_outputs['input_ids'],
|
||||
batch_size=BATCH_SIZE, drop_last=True)
|
||||
```
|
||||
|
||||
### 3. Set the Quantization Configuration
|
||||
|
||||
We need to set the quantization configuration, you can check
|
||||
[quark config guide](https://quark.docs.amd.com/latest/pytorch/user_guide_config_description.html)
|
||||
for further details. Here we use FP8 per-tensor quantization on weight, activation,
|
||||
kv-cache and the quantization algorithm is AutoSmoothQuant.
|
||||
|
||||
:::{note}
|
||||
Note the quantization algorithm needs a JSON config file and the config file is located in
|
||||
[Quark Pytorch examples](https://quark.docs.amd.com/latest/pytorch/pytorch_examples.html),
|
||||
under the directory `examples/torch/language_modeling/llm_ptq/models`. For example,
|
||||
AutoSmoothQuant config file for Llama is
|
||||
`examples/torch/language_modeling/llm_ptq/models/llama/autosmoothquant_config.json`.
|
||||
:::
|
||||
|
||||
```python
|
||||
from quark.torch.quantization import (Config, QuantizationConfig,
|
||||
FP8E4M3PerTensorSpec,
|
||||
load_quant_algo_config_from_file)
|
||||
|
||||
# Define fp8/per-tensor/static spec.
|
||||
FP8_PER_TENSOR_SPEC = FP8E4M3PerTensorSpec(observer_method="min_max",
|
||||
is_dynamic=False).to_quantization_spec()
|
||||
|
||||
# Define global quantization config, input tensors and weight apply FP8_PER_TENSOR_SPEC.
|
||||
global_quant_config = QuantizationConfig(input_tensors=FP8_PER_TENSOR_SPEC,
|
||||
weight=FP8_PER_TENSOR_SPEC)
|
||||
|
||||
# Define quantization config for kv-cache layers, output tensors apply FP8_PER_TENSOR_SPEC.
|
||||
KV_CACHE_SPEC = FP8_PER_TENSOR_SPEC
|
||||
kv_cache_layer_names_for_llama = ["*k_proj", "*v_proj"]
|
||||
kv_cache_quant_config = {name :
|
||||
QuantizationConfig(input_tensors=global_quant_config.input_tensors,
|
||||
weight=global_quant_config.weight,
|
||||
output_tensors=KV_CACHE_SPEC)
|
||||
for name in kv_cache_layer_names_for_llama}
|
||||
layer_quant_config = kv_cache_quant_config.copy()
|
||||
|
||||
# Define algorithm config by config file.
|
||||
LLAMA_AUTOSMOOTHQUANT_CONFIG_FILE =
|
||||
'examples/torch/language_modeling/llm_ptq/models/llama/autosmoothquant_config.json'
|
||||
algo_config = load_quant_algo_config_from_file(LLAMA_AUTOSMOOTHQUANT_CONFIG_FILE)
|
||||
|
||||
EXCLUDE_LAYERS = ["lm_head"]
|
||||
quant_config = Config(
|
||||
global_quant_config=global_quant_config,
|
||||
layer_quant_config=layer_quant_config,
|
||||
kv_cache_quant_config=kv_cache_quant_config,
|
||||
exclude=EXCLUDE_LAYERS,
|
||||
algo_config=algo_config)
|
||||
```
|
||||
|
||||
### 4. Quantize the Model and Export
|
||||
|
||||
Then we can apply the quantization. After quantizing, we need to freeze the
|
||||
quantized model first before exporting. Note that we need to export model with format of
|
||||
HuggingFace `safetensors`, you can refer to
|
||||
[HuggingFace format exporting](https://quark.docs.amd.com/latest/pytorch/export/quark_export_hf.html)
|
||||
for more exporting format details.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from quark.torch import ModelQuantizer, ModelExporter
|
||||
from quark.torch.export import ExporterConfig, JsonExporterConfig
|
||||
|
||||
# Apply quantization.
|
||||
quantizer = ModelQuantizer(quant_config)
|
||||
quant_model = quantizer.quantize_model(model, calib_dataloader)
|
||||
|
||||
# Freeze quantized model to export.
|
||||
freezed_model = quantizer.freeze(model)
|
||||
|
||||
# Define export config.
|
||||
LLAMA_KV_CACHE_GROUP = ["*k_proj", "*v_proj"]
|
||||
export_config = ExporterConfig(json_export_config=JsonExporterConfig())
|
||||
export_config.json_export_config.kv_cache_group = LLAMA_KV_CACHE_GROUP
|
||||
|
||||
EXPORT_DIR = MODEL_ID.split("/")[1] + "-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant"
|
||||
exporter = ModelExporter(config=export_config, export_dir=EXPORT_DIR)
|
||||
with torch.no_grad():
|
||||
exporter.export_safetensors_model(freezed_model,
|
||||
quant_config=quant_config, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
### 5. Evaluation in vLLM
|
||||
|
||||
Now, you can load and run the Quark quantized model directly through the LLM entrypoint:
|
||||
|
||||
```python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
# Sample prompts.
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
# Create a sampling params object.
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
# Create an LLM.
|
||||
llm = LLM(model="Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant",
|
||||
kv_cache_dtype='fp8',quantization='quark')
|
||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||
# that contain the prompt, generated text, and other information.
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
# Print the outputs.
|
||||
print("\nGenerated Outputs:\n" + "-" * 60)
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}")
|
||||
print(f"Output: {generated_text!r}")
|
||||
print("-" * 60)
|
||||
```
|
||||
|
||||
Or, you can use `lm_eval` to evaluate accuracy:
|
||||
|
||||
```console
|
||||
$ lm_eval --model vllm \
|
||||
--model_args pretrained=Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor-autosmoothquant,kv_cache_dtype='fp8',quantization='quark' \
|
||||
--tasks gsm8k
|
||||
```
|
||||
|
||||
## Quark Quantization Script
|
||||
In addition to the example of Python API above, Quark also offers a
|
||||
[quantization script](https://quark.docs.amd.com/latest/pytorch/example_quark_torch_llm_ptq.html)
|
||||
to quantize large language models more conveniently. It supports quantizing models with variety
|
||||
of different quantization schemes and optimization algorithms. It can export the quantized model
|
||||
and run evaluation tasks on the fly. With the script, the example above can be:
|
||||
|
||||
```console
|
||||
python3 quantize_quark.py --model_dir meta-llama/Llama-2-70b-chat-hf \
|
||||
--output_dir /path/to/output \
|
||||
--quant_scheme w_fp8_a_fp8 \
|
||||
--kv_cache_dtype fp8 \
|
||||
--quant_algo autosmoothquant \
|
||||
--num_calib_data 512 \
|
||||
--model_export hf_format \
|
||||
--tasks gsm8k
|
||||
```
|
Reference in New Issue
Block a user