mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Chore] Separate out vllm.utils.mem_utils
(#27143)
Signed-off-by: iAmir97 <Amir.balwel@embeddedllm.com> Signed-off-by: iAmir97 <71513472+iAmir97@users.noreply.github.com> Co-authored-by: iAmir97 <Amir.balwel@embeddedllm.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
@ -6,7 +6,7 @@ import torch
|
||||
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.device_allocator.cumem import CuMemAllocator
|
||||
from vllm.utils import GiB_bytes
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
|
||||
from ..utils import create_new_process_for_each_test
|
||||
|
||||
|
@ -11,7 +11,7 @@ from tests.kernels.utils import opcheck
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.attention.layer import Attention, MultiHeadAttention
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import get_max_shared_memory_bytes
|
||||
from vllm.utils.mem_utils import get_max_shared_memory_bytes
|
||||
|
||||
if not current_platform.is_rocm():
|
||||
from xformers import ops as xops
|
||||
|
@ -7,7 +7,7 @@ from unittest.mock import patch
|
||||
import pytest
|
||||
|
||||
from vllm import LLM
|
||||
from vllm.utils import GiB_bytes
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
from vllm.v1.core.kv_cache_utils import (
|
||||
generate_scheduler_kv_cache_config,
|
||||
get_kv_cache_configs,
|
||||
|
@ -46,10 +46,10 @@ from vllm.platforms import current_platform
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
from vllm.utils import (
|
||||
FlexibleArgumentParser,
|
||||
GB_bytes,
|
||||
cuda_device_count_stateless,
|
||||
get_open_port,
|
||||
)
|
||||
from vllm.utils.mem_constants import GB_bytes
|
||||
|
||||
if current_platform.is_rocm():
|
||||
from amdsmi import (
|
||||
|
@ -23,7 +23,6 @@ from vllm.transformers_utils.detokenizer_utils import convert_ids_list_to_tokens
|
||||
|
||||
from vllm.utils import (
|
||||
FlexibleArgumentParser,
|
||||
MemorySnapshot,
|
||||
bind_kv_cache,
|
||||
common_broadcastable_dtype,
|
||||
current_stream,
|
||||
@ -33,13 +32,13 @@ from vllm.utils import (
|
||||
join_host_port,
|
||||
make_zmq_path,
|
||||
make_zmq_socket,
|
||||
memory_profiling,
|
||||
sha256,
|
||||
split_host_port,
|
||||
split_zmq_path,
|
||||
unique_filepath,
|
||||
)
|
||||
|
||||
from vllm.utils.mem_utils import MemorySnapshot, memory_profiling
|
||||
from ..utils import create_new_process_for_each_test, flat_product
|
||||
|
||||
|
||||
|
@ -14,7 +14,8 @@ from vllm.multimodal.inputs import (
|
||||
PlaceholderRange,
|
||||
)
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.utils import GiB_bytes, sha256, sha256_cbor
|
||||
from vllm.utils import sha256, sha256_cbor
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
from vllm.v1.core.kv_cache_manager import KVCacheManager
|
||||
from vllm.v1.core.kv_cache_utils import (
|
||||
BlockHash,
|
||||
|
@ -13,7 +13,7 @@ from vllm.config import (
|
||||
)
|
||||
from vllm.pooling_params import PoolingParams
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.utils import GiB_bytes
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
from vllm.v1.core.kv_cache_utils import estimate_max_model_len, get_kv_cache_configs
|
||||
from vllm.v1.core.sched.output import CachedRequestData, NewRequestData, SchedulerOutput
|
||||
from vllm.v1.worker.tpu_model_runner import (
|
||||
|
@ -21,7 +21,8 @@ from vllm.distributed.parallel_state import (
|
||||
from vllm.model_executor.layers.mamba.mamba_mixer2 import MambaMixer2
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.utils import GiB_bytes, update_environment_variables
|
||||
from vllm.utils import update_environment_variables
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
from vllm.v1.core.kv_cache_utils import estimate_max_model_len, get_kv_cache_configs
|
||||
from vllm.v1.core.sched.output import CachedRequestData, NewRequestData, SchedulerOutput
|
||||
from vllm.v1.kv_cache_interface import (
|
||||
|
@ -11,7 +11,7 @@ import pytest
|
||||
import torch
|
||||
|
||||
from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.utils import MemorySnapshot
|
||||
from vllm.utils.mem_utils import MemorySnapshot
|
||||
from vllm.v1.worker.gpu_worker import Worker, init_worker_distributed_environment
|
||||
|
||||
# Global queue to track operation order across processes
|
||||
|
@ -10,7 +10,8 @@ from pydantic.dataclasses import dataclass
|
||||
|
||||
from vllm.config.utils import config
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils import GiB_bytes, get_cpu_memory
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
from vllm.utils.mem_utils import get_cpu_memory
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from vllm.config.parallel import ParallelConfig
|
||||
|
@ -81,7 +81,8 @@ from vllm.transformers_utils.config import (
|
||||
maybe_override_with_speculators,
|
||||
)
|
||||
from vllm.transformers_utils.utils import check_gguf_file
|
||||
from vllm.utils import FlexibleArgumentParser, GiB_bytes, get_ip, is_in_ray_actor
|
||||
from vllm.utils import FlexibleArgumentParser, get_ip, is_in_ray_actor
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
from vllm.v1.sample.logits_processor import LogitsProcessor
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -17,9 +17,9 @@ from vllm.distributed.device_communicators.shm_object_storage import (
|
||||
SingleWriterShmRingBuffer,
|
||||
)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils import GiB_bytes, MiB_bytes
|
||||
from vllm.utils.cache import CacheInfo, LRUCache
|
||||
from vllm.utils.jsontree import json_count_leaves, json_map_leaves, json_reduce_leaves
|
||||
from vllm.utils.mem_constants import GiB_bytes, MiB_bytes
|
||||
|
||||
from .inputs import (
|
||||
MultiModalBatchedField,
|
||||
|
@ -151,7 +151,7 @@ class CpuPlatform(Platform):
|
||||
@classmethod
|
||||
def get_device_total_memory(cls, device_id: int = 0) -> int:
|
||||
import vllm.envs as envs
|
||||
from vllm.utils import GiB_bytes
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
|
||||
kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE
|
||||
if kv_cache_space is None:
|
||||
|
@ -4,7 +4,6 @@
|
||||
import contextlib
|
||||
import datetime
|
||||
import enum
|
||||
import gc
|
||||
import getpass
|
||||
import hashlib
|
||||
import importlib
|
||||
@ -21,7 +20,6 @@ import sys
|
||||
import tempfile
|
||||
import textwrap
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
import uuid
|
||||
import warnings
|
||||
@ -38,12 +36,10 @@ from collections import defaultdict
|
||||
from collections.abc import (
|
||||
Callable,
|
||||
Collection,
|
||||
Generator,
|
||||
Iterator,
|
||||
Sequence,
|
||||
)
|
||||
from concurrent.futures.process import ProcessPoolExecutor
|
||||
from dataclasses import dataclass, field
|
||||
from functools import cache, lru_cache, partial, wraps
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, TextIO, TypeVar
|
||||
@ -58,7 +54,6 @@ import psutil
|
||||
import regex as re
|
||||
import setproctitle
|
||||
import torch
|
||||
import torch.types
|
||||
import yaml
|
||||
import zmq
|
||||
import zmq.asyncio
|
||||
@ -105,17 +100,6 @@ STR_XFORMERS_ATTN_VAL: str = "XFORMERS"
|
||||
STR_FLASH_ATTN_VAL: str = "FLASH_ATTN"
|
||||
STR_INVALID_VAL: str = "INVALID"
|
||||
|
||||
MB_bytes = 1_000_000
|
||||
"""The number of bytes in one megabyte (MB)."""
|
||||
|
||||
MiB_bytes = 1 << 20
|
||||
"""The number of bytes in one mebibyte (MiB)."""
|
||||
|
||||
GB_bytes = 1_000_000_000
|
||||
"""The number of bytes in one gigabyte (GB)."""
|
||||
|
||||
GiB_bytes = 1 << 30
|
||||
"""The number of bytes in one gibibyte (GiB)."""
|
||||
|
||||
# ANSI color codes
|
||||
CYAN = "\033[1;36m"
|
||||
@ -180,23 +164,6 @@ class Counter:
|
||||
self.counter = 0
|
||||
|
||||
|
||||
@cache
|
||||
def get_max_shared_memory_bytes(gpu: int = 0) -> int:
|
||||
"""Returns the maximum shared memory per thread block in bytes."""
|
||||
from vllm import _custom_ops as ops
|
||||
|
||||
max_shared_mem = ops.get_max_shared_memory_per_block_device_attribute(gpu)
|
||||
# value 0 will cause MAX_SEQ_LEN become negative and test_attention.py
|
||||
# will fail
|
||||
assert max_shared_mem > 0, "max_shared_mem can not be zero"
|
||||
return int(max_shared_mem)
|
||||
|
||||
|
||||
def get_cpu_memory() -> int:
|
||||
"""Returns the total CPU memory of the node in bytes."""
|
||||
return psutil.virtual_memory().total
|
||||
|
||||
|
||||
def random_uuid() -> str:
|
||||
return str(uuid.uuid4().hex)
|
||||
|
||||
@ -581,30 +548,6 @@ def is_uva_available() -> bool:
|
||||
return is_pin_memory_available()
|
||||
|
||||
|
||||
class DeviceMemoryProfiler:
|
||||
def __init__(self, device: torch.types.Device | None = None):
|
||||
self.device = device
|
||||
|
||||
def current_memory_usage(self) -> float:
|
||||
# Return the memory usage in bytes.
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
gc.collect()
|
||||
return current_platform.get_current_memory_usage(self.device)
|
||||
|
||||
def __enter__(self):
|
||||
self.initial_memory = self.current_memory_usage()
|
||||
# This allows us to call methods of the context manager if needed
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.final_memory = self.current_memory_usage()
|
||||
self.consumed_memory = self.final_memory - self.initial_memory
|
||||
|
||||
# Force garbage collection
|
||||
gc.collect()
|
||||
|
||||
|
||||
def make_ndarray_with_pad(
|
||||
x: list[list[T]],
|
||||
pad: T,
|
||||
@ -1642,183 +1585,6 @@ def kill_process_tree(pid: int):
|
||||
os.kill(pid, signal.SIGKILL)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MemorySnapshot:
|
||||
"""Memory snapshot."""
|
||||
|
||||
torch_peak: int = 0
|
||||
free_memory: int = 0
|
||||
total_memory: int = 0
|
||||
cuda_memory: int = 0
|
||||
torch_memory: int = 0
|
||||
non_torch_memory: int = 0
|
||||
timestamp: float = 0.0
|
||||
auto_measure: bool = True
|
||||
|
||||
def __post_init__(self):
|
||||
if self.auto_measure:
|
||||
self.measure()
|
||||
|
||||
def measure(self):
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
# we measure the torch peak memory usage via allocated_bytes,
|
||||
# rather than `torch.cuda.memory_reserved()` .
|
||||
# After `torch.cuda.reset_peak_memory_stats()`,
|
||||
# `torch.cuda.memory_reserved()` will keep growing, and only shrink
|
||||
# when we call `torch.cuda.empty_cache()` or OOM happens.
|
||||
self.torch_peak = torch.cuda.memory_stats().get("allocated_bytes.all.peak", 0)
|
||||
|
||||
self.free_memory, self.total_memory = torch.cuda.mem_get_info()
|
||||
shared_sysmem_device_mem_sms = ((8, 7), (11, 0), (12, 1)) # Orin, Thor, Spark
|
||||
if (
|
||||
current_platform.is_cuda()
|
||||
and current_platform.get_device_capability() in shared_sysmem_device_mem_sms
|
||||
):
|
||||
# On UMA (Orin, Thor and Spark) platform,
|
||||
# where both CPU and GPU rely on system memory,
|
||||
# the cudaMemGetInfo function shows the amount of free system memory
|
||||
# rather than what’s actually available.
|
||||
# In the case,
|
||||
# torch.cuda.mem_get_info() only reports "free" memory,
|
||||
# which can be lower than what is actually
|
||||
# available due to not including cache memory.
|
||||
# There’s also a comprehensive reference page
|
||||
# that explains how you can compute the proper value yourself.
|
||||
# https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/#estimating-total-allocatable-device-memory-on-an-integrated-gpu-device
|
||||
self.free_memory = psutil.virtual_memory().available
|
||||
|
||||
self.cuda_memory = self.total_memory - self.free_memory
|
||||
|
||||
# torch.cuda.memory_reserved() is how many bytes
|
||||
# PyTorch gets from cuda (by calling cudaMalloc, etc.)
|
||||
# this is used to measure the non-torch memory usage
|
||||
self.torch_memory = torch.cuda.memory_reserved()
|
||||
|
||||
self.non_torch_memory = self.cuda_memory - self.torch_memory
|
||||
self.timestamp = time.time()
|
||||
|
||||
def __sub__(self, other: "MemorySnapshot") -> "MemorySnapshot":
|
||||
return MemorySnapshot(
|
||||
torch_peak=self.torch_peak - other.torch_peak,
|
||||
free_memory=self.free_memory - other.free_memory,
|
||||
total_memory=self.total_memory - other.total_memory,
|
||||
cuda_memory=self.cuda_memory - other.cuda_memory,
|
||||
torch_memory=self.torch_memory - other.torch_memory,
|
||||
non_torch_memory=self.non_torch_memory - other.non_torch_memory,
|
||||
timestamp=self.timestamp - other.timestamp,
|
||||
auto_measure=False,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MemoryProfilingResult:
|
||||
"""Memory profiling result. All numbers are in bytes."""
|
||||
|
||||
non_kv_cache_memory: int = 0
|
||||
torch_peak_increase: int = 0
|
||||
non_torch_increase: int = 0
|
||||
weights_memory: float = 0
|
||||
before_create: MemorySnapshot = field(default_factory=MemorySnapshot)
|
||||
before_profile: MemorySnapshot = field(default_factory=MemorySnapshot)
|
||||
after_profile: MemorySnapshot = field(default_factory=MemorySnapshot)
|
||||
profile_time: float = 0.0
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (
|
||||
f"Memory profiling takes {self.profile_time:.2f} seconds. "
|
||||
f"Total non KV cache memory: "
|
||||
f"{(self.non_kv_cache_memory / GiB_bytes):.2f}GiB; "
|
||||
f"torch peak memory increase: "
|
||||
f"{(self.torch_peak_increase / GiB_bytes):.2f}GiB; "
|
||||
f"non-torch forward increase memory: "
|
||||
f"{(self.non_torch_increase / GiB_bytes):.2f}GiB; "
|
||||
f"weights memory: {(self.weights_memory / GiB_bytes):.2f}GiB."
|
||||
)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def memory_profiling(
|
||||
baseline_snapshot: MemorySnapshot, weights_memory: int
|
||||
) -> Generator[MemoryProfilingResult, None, None]:
|
||||
"""Memory profiling context manager.
|
||||
baseline_snapshot: the memory snapshot before the current vLLM instance.
|
||||
weights_memory: memory used by PyTorch when loading the model weights.
|
||||
Note that, before loading the model weights, we also initialize the device
|
||||
and distributed environment, which may consume some memory. This part is not
|
||||
included in the weights_memory because PyTorch does not control it.
|
||||
|
||||
The memory in one GPU can be classified into 3 categories:
|
||||
1. memory used by anything other than the current vLLM instance.
|
||||
2. memory used by torch in the current vLLM instance.
|
||||
3. memory used in the current vLLM instance, but not by torch.
|
||||
|
||||
A quantitive example:
|
||||
|
||||
Before creating the current vLLM instance:
|
||||
category 1: 1 GiB
|
||||
category 2: 0 GiB
|
||||
category 3: 0 GiB
|
||||
|
||||
After creating the current vLLM instance and loading the model,
|
||||
(i.e. before profiling):
|
||||
category 1: 1 GiB
|
||||
category 2: 2 GiB (model weights take 2 GiB)
|
||||
category 3: 0.5 GiB (memory used by NCCL)
|
||||
|
||||
During profiling (peak):
|
||||
category 1: 1 GiB
|
||||
category 2: 4 GiB (peak activation tensors take 2 GiB)
|
||||
category 3: 1 GiB (memory used by NCCL + buffers for some attention backends)
|
||||
|
||||
After profiling:
|
||||
category 1: 1 GiB
|
||||
category 2: 3 GiB (after garbage-collecting activation tensors)
|
||||
category 3: 1 GiB (memory used by NCCL + buffers for some attention backends)
|
||||
|
||||
In this case, non-kv cache takes 5 GiB in total, including:
|
||||
a. 2 GiB used by the model weights (category 2)
|
||||
b. 2 GiB reserved for the peak activation tensors (category 2)
|
||||
c. 1 GiB used by non-torch components (category 3)
|
||||
|
||||
The memory used for loading weights (a.) is directly given from the argument `weights_memory`.
|
||||
|
||||
The increase of `torch.cuda.memory_stats()["allocated_bytes.all.peak"]` during profiling gives (b.).
|
||||
|
||||
The increase of `non_torch_memory` from creating the current vLLM instance until after profiling to get (c.).
|
||||
""" # noqa
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
result = MemoryProfilingResult()
|
||||
|
||||
result.before_create = baseline_snapshot
|
||||
# the part of memory used for holding the model weights
|
||||
result.weights_memory = weights_memory
|
||||
|
||||
result.before_profile.measure()
|
||||
|
||||
yield result
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
result.after_profile.measure()
|
||||
|
||||
diff_profile = result.after_profile - result.before_profile
|
||||
diff_from_create = result.after_profile - result.before_create
|
||||
result.torch_peak_increase = diff_profile.torch_peak
|
||||
result.non_torch_increase = diff_from_create.non_torch_memory
|
||||
result.profile_time = diff_profile.timestamp
|
||||
|
||||
non_torch_memory = result.non_torch_increase
|
||||
peak_activation_memory = result.torch_peak_increase
|
||||
result.non_kv_cache_memory = (
|
||||
non_torch_memory + peak_activation_memory + result.weights_memory
|
||||
) # noqa
|
||||
|
||||
|
||||
# Adapted from: https://github.com/sgl-project/sglang/blob/v0.4.1/python/sglang/srt/utils.py#L630 # noqa: E501
|
||||
def set_ulimit(target_soft_limit=65535):
|
||||
if sys.platform.startswith("win"):
|
||||
|
13
vllm/utils/mem_constants.py
Normal file
13
vllm/utils/mem_constants.py
Normal file
@ -0,0 +1,13 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
MB_bytes = 1_000_000
|
||||
"""The number of bytes in one megabyte (MB)."""
|
||||
|
||||
MiB_bytes = 1 << 20
|
||||
"""The number of bytes in one mebibyte (MiB)."""
|
||||
|
||||
GB_bytes = 1_000_000_000
|
||||
"""The number of bytes in one gigabyte (GB)."""
|
||||
|
||||
GiB_bytes = 1 << 30
|
||||
"""The number of bytes in one gibibyte (GiB)."""
|
232
vllm/utils/mem_utils.py
Normal file
232
vllm/utils/mem_utils.py
Normal file
@ -0,0 +1,232 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import contextlib
|
||||
import gc
|
||||
import time
|
||||
from collections.abc import Generator
|
||||
from dataclasses import dataclass, field
|
||||
from functools import cache
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
import torch.types
|
||||
|
||||
from .mem_constants import GiB_bytes
|
||||
|
||||
|
||||
@cache
|
||||
def get_max_shared_memory_bytes(gpu: int = 0) -> int:
|
||||
"""Returns the maximum shared memory per thread block in bytes."""
|
||||
from vllm import _custom_ops as ops
|
||||
|
||||
max_shared_mem = ops.get_max_shared_memory_per_block_device_attribute(gpu)
|
||||
# value 0 will cause MAX_SEQ_LEN become negative and test_attention.py
|
||||
# will fail
|
||||
assert max_shared_mem > 0, "max_shared_mem can not be zero"
|
||||
return int(max_shared_mem)
|
||||
|
||||
|
||||
def get_cpu_memory() -> int:
|
||||
"""Returns the total CPU memory of the node in bytes."""
|
||||
return psutil.virtual_memory().total
|
||||
|
||||
|
||||
class DeviceMemoryProfiler:
|
||||
def __init__(self, device: torch.types.Device | None = None):
|
||||
self.device = device
|
||||
|
||||
def current_memory_usage(self) -> float:
|
||||
# Return the memory usage in bytes.
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
gc.collect()
|
||||
return current_platform.get_current_memory_usage(self.device)
|
||||
|
||||
def __enter__(self):
|
||||
self.initial_memory = self.current_memory_usage()
|
||||
# This allows us to call methods of the context manager if needed
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.final_memory = self.current_memory_usage()
|
||||
self.consumed_memory = self.final_memory - self.initial_memory
|
||||
|
||||
# Force garbage collection
|
||||
gc.collect()
|
||||
|
||||
|
||||
@dataclass
|
||||
class MemorySnapshot:
|
||||
"""Memory snapshot."""
|
||||
|
||||
torch_peak: int = 0
|
||||
free_memory: int = 0
|
||||
total_memory: int = 0
|
||||
cuda_memory: int = 0
|
||||
torch_memory: int = 0
|
||||
non_torch_memory: int = 0
|
||||
timestamp: float = 0.0
|
||||
auto_measure: bool = True
|
||||
|
||||
def __post_init__(self):
|
||||
if self.auto_measure:
|
||||
self.measure()
|
||||
|
||||
def measure(self):
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
# we measure the torch peak memory usage via allocated_bytes,
|
||||
# rather than `torch.cuda.memory_reserved()` .
|
||||
# After `torch.cuda.reset_peak_memory_stats()`,
|
||||
# `torch.cuda.memory_reserved()` will keep growing, and only shrink
|
||||
# when we call `torch.cuda.empty_cache()` or OOM happens.
|
||||
self.torch_peak = torch.cuda.memory_stats().get("allocated_bytes.all.peak", 0)
|
||||
|
||||
self.free_memory, self.total_memory = torch.cuda.mem_get_info()
|
||||
shared_sysmem_device_mem_sms = ((8, 7), (11, 0), (12, 1)) # Orin, Thor, Spark
|
||||
if (
|
||||
current_platform.is_cuda()
|
||||
and current_platform.get_device_capability() in shared_sysmem_device_mem_sms
|
||||
):
|
||||
# On UMA (Orin, Thor and Spark) platform,
|
||||
# where both CPU and GPU rely on system memory,
|
||||
# the cudaMemGetInfo function shows the amount of free system memory
|
||||
# rather than what’s actually available.
|
||||
# In the case,
|
||||
# torch.cuda.mem_get_info() only reports "free" memory,
|
||||
# which can be lower than what is actually
|
||||
# available due to not including cache memory.
|
||||
# There’s also a comprehensive reference page
|
||||
# that explains how you can compute the proper value yourself.
|
||||
# https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/#estimating-total-allocatable-device-memory-on-an-integrated-gpu-device
|
||||
self.free_memory = psutil.virtual_memory().available
|
||||
|
||||
self.cuda_memory = self.total_memory - self.free_memory
|
||||
|
||||
# torch.cuda.memory_reserved() is how many bytes
|
||||
# PyTorch gets from cuda (by calling cudaMalloc, etc.)
|
||||
# this is used to measure the non-torch memory usage
|
||||
self.torch_memory = torch.cuda.memory_reserved()
|
||||
|
||||
self.non_torch_memory = self.cuda_memory - self.torch_memory
|
||||
self.timestamp = time.time()
|
||||
|
||||
def __sub__(self, other: "MemorySnapshot") -> "MemorySnapshot":
|
||||
return MemorySnapshot(
|
||||
torch_peak=self.torch_peak - other.torch_peak,
|
||||
free_memory=self.free_memory - other.free_memory,
|
||||
total_memory=self.total_memory - other.total_memory,
|
||||
cuda_memory=self.cuda_memory - other.cuda_memory,
|
||||
torch_memory=self.torch_memory - other.torch_memory,
|
||||
non_torch_memory=self.non_torch_memory - other.non_torch_memory,
|
||||
timestamp=self.timestamp - other.timestamp,
|
||||
auto_measure=False,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MemoryProfilingResult:
|
||||
"""Memory profiling result. All numbers are in bytes."""
|
||||
|
||||
non_kv_cache_memory: int = 0
|
||||
torch_peak_increase: int = 0
|
||||
non_torch_increase: int = 0
|
||||
weights_memory: float = 0
|
||||
before_create: MemorySnapshot = field(default_factory=MemorySnapshot)
|
||||
before_profile: MemorySnapshot = field(default_factory=MemorySnapshot)
|
||||
after_profile: MemorySnapshot = field(default_factory=MemorySnapshot)
|
||||
profile_time: float = 0.0
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (
|
||||
f"Memory profiling takes {self.profile_time:.2f} seconds. "
|
||||
f"Total non KV cache memory: "
|
||||
f"{(self.non_kv_cache_memory / GiB_bytes):.2f}GiB; "
|
||||
f"torch peak memory increase: "
|
||||
f"{(self.torch_peak_increase / GiB_bytes):.2f}GiB; "
|
||||
f"non-torch forward increase memory: "
|
||||
f"{(self.non_torch_increase / GiB_bytes):.2f}GiB; "
|
||||
f"weights memory: {(self.weights_memory / GiB_bytes):.2f}GiB."
|
||||
)
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def memory_profiling(
|
||||
baseline_snapshot: MemorySnapshot, weights_memory: int
|
||||
) -> Generator[MemoryProfilingResult, None, None]:
|
||||
"""Memory profiling context manager.
|
||||
baseline_snapshot: the memory snapshot before the current vLLM instance.
|
||||
weights_memory: memory used by PyTorch when loading the model weights.
|
||||
Note that, before loading the model weights, we also initialize the device
|
||||
and distributed environment, which may consume some memory. This part is not
|
||||
included in the weights_memory because PyTorch does not control it.
|
||||
|
||||
The memory in one GPU can be classified into 3 categories:
|
||||
1. memory used by anything other than the current vLLM instance.
|
||||
2. memory used by torch in the current vLLM instance.
|
||||
3. memory used in the current vLLM instance, but not by torch.
|
||||
|
||||
A quantitive example:
|
||||
|
||||
Before creating the current vLLM instance:
|
||||
category 1: 1 GiB
|
||||
category 2: 0 GiB
|
||||
category 3: 0 GiB
|
||||
|
||||
After creating the current vLLM instance and loading the model,
|
||||
(i.e. before profiling):
|
||||
category 1: 1 GiB
|
||||
category 2: 2 GiB (model weights take 2 GiB)
|
||||
category 3: 0.5 GiB (memory used by NCCL)
|
||||
|
||||
During profiling (peak):
|
||||
category 1: 1 GiB
|
||||
category 2: 4 GiB (peak activation tensors take 2 GiB)
|
||||
category 3: 1 GiB (memory used by NCCL + buffers for some attention backends)
|
||||
|
||||
After profiling:
|
||||
category 1: 1 GiB
|
||||
category 2: 3 GiB (after garbage-collecting activation tensors)
|
||||
category 3: 1 GiB (memory used by NCCL + buffers for some attention backends)
|
||||
|
||||
In this case, non-kv cache takes 5 GiB in total, including:
|
||||
a. 2 GiB used by the model weights (category 2)
|
||||
b. 2 GiB reserved for the peak activation tensors (category 2)
|
||||
c. 1 GiB used by non-torch components (category 3)
|
||||
|
||||
The memory used for loading weights (a.) is directly given from the argument `weights_memory`.
|
||||
|
||||
The increase of `torch.cuda.memory_stats()["allocated_bytes.all.peak"]` during profiling gives (b.).
|
||||
|
||||
The increase of `non_torch_memory` from creating the current vLLM instance until after profiling to get (c.).
|
||||
""" # noqa
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
result = MemoryProfilingResult()
|
||||
|
||||
result.before_create = baseline_snapshot
|
||||
# the part of memory used for holding the model weights
|
||||
result.weights_memory = weights_memory
|
||||
|
||||
result.before_profile.measure()
|
||||
|
||||
yield result
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
result.after_profile.measure()
|
||||
|
||||
diff_profile = result.after_profile - result.before_profile
|
||||
diff_from_create = result.after_profile - result.before_create
|
||||
result.torch_peak_increase = diff_profile.torch_peak
|
||||
result.non_torch_increase = diff_from_create.non_torch_memory
|
||||
result.profile_time = diff_profile.timestamp
|
||||
|
||||
non_torch_memory = result.non_torch_increase
|
||||
peak_activation_memory = result.torch_peak_increase
|
||||
result.non_kv_cache_memory = (
|
||||
non_torch_memory + peak_activation_memory + result.weights_memory
|
||||
) # noqa
|
@ -12,7 +12,8 @@ from typing import Any, NewType, TypeAlias
|
||||
from vllm import envs
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils import GiB_bytes, cdiv, sha256_cbor
|
||||
from vllm.utils import cdiv, sha256_cbor
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
from vllm.v1.kv_cache_interface import (
|
||||
ChunkedLocalAttentionSpec,
|
||||
FullAttentionSpec,
|
||||
|
@ -74,8 +74,6 @@ from vllm.sequence import IntermediateTensors
|
||||
from vllm.tasks import GenerationTask, PoolingTask, SupportedTask
|
||||
from vllm.utils import (
|
||||
STR_DTYPE_TO_TORCH_DTYPE,
|
||||
DeviceMemoryProfiler,
|
||||
GiB_bytes,
|
||||
cdiv,
|
||||
check_use_alibi,
|
||||
get_dtype_size,
|
||||
@ -85,6 +83,8 @@ from vllm.utils import (
|
||||
supports_dynamo,
|
||||
)
|
||||
from vllm.utils.jsontree import json_map_leaves
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
from vllm.utils.mem_utils import DeviceMemoryProfiler
|
||||
from vllm.v1.attention.backends.flash_attn import AttentionMetadata
|
||||
from vllm.v1.attention.backends.gdn_attn import GDNAttentionMetadataBuilder
|
||||
from vllm.v1.attention.backends.utils import (
|
||||
|
@ -28,7 +28,8 @@ from vllm.model_executor.warmup.kernel_warmup import kernel_warmup
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.tasks import SupportedTask
|
||||
from vllm.utils import GiB_bytes, MemorySnapshot, memory_profiling
|
||||
from vllm.utils.mem_constants import GiB_bytes
|
||||
from vllm.utils.mem_utils import MemorySnapshot, memory_profiling
|
||||
from vllm.v1.engine import ReconfigureDistributedRequest, ReconfigureRankType
|
||||
from vllm.v1.kv_cache_interface import KVCacheConfig, KVCacheSpec
|
||||
from vllm.v1.outputs import (
|
||||
|
Reference in New Issue
Block a user