mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[Misc] Update type annotation for rotary embedding base
(#18914)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
@ -22,7 +22,7 @@ def benchmark_rope_kernels_multi_lora(
|
||||
seed: int,
|
||||
device: str,
|
||||
max_position: int = 8192,
|
||||
base: int = 10000,
|
||||
base: float = 10000,
|
||||
) -> None:
|
||||
current_platform.seed_everything(seed)
|
||||
torch.set_default_device(device)
|
||||
|
@ -70,7 +70,7 @@ def test_rotary_embedding(
|
||||
device: str,
|
||||
use_key: bool,
|
||||
max_position: int = 8192,
|
||||
base: int = 10000,
|
||||
base: float = 10000,
|
||||
) -> None:
|
||||
if rotary_dim is None:
|
||||
rotary_dim = head_size
|
||||
@ -135,7 +135,7 @@ def test_batched_rotary_embedding(
|
||||
device: str,
|
||||
use_key: bool,
|
||||
max_position: int = 8192,
|
||||
base: int = 10000,
|
||||
base: float = 10000,
|
||||
) -> None:
|
||||
current_platform.seed_everything(seed)
|
||||
torch.set_default_device(device)
|
||||
@ -203,7 +203,7 @@ def test_batched_rotary_embedding_multi_lora(
|
||||
device: str,
|
||||
use_key: bool,
|
||||
max_position: int = 8192,
|
||||
base: int = 10000,
|
||||
base: float = 10000,
|
||||
) -> None:
|
||||
current_platform.seed_everything(seed)
|
||||
torch.set_default_device(device)
|
||||
|
@ -96,7 +96,7 @@ class RotaryEmbedding(CustomOp):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
dtype: torch.dtype,
|
||||
) -> None:
|
||||
@ -113,7 +113,7 @@ class RotaryEmbedding(CustomOp):
|
||||
self.cos_sin_cache: torch.Tensor
|
||||
self.register_buffer("cos_sin_cache", cache, persistent=False)
|
||||
|
||||
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
||||
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
||||
"""Compute the inverse frequency."""
|
||||
# NOTE(woosuk): To exactly match the HF implementation, we need to
|
||||
# use CPU to compute the cache and then move it to GPU. However, we
|
||||
@ -404,7 +404,7 @@ class LinearScalingRotaryEmbedding(RotaryEmbedding):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
scaling_factors: Union[list[float], float],
|
||||
dtype: torch.dtype,
|
||||
@ -464,7 +464,7 @@ class NTKScalingRotaryEmbedding(RotaryEmbedding):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
scaling_factor: float,
|
||||
dtype: torch.dtype,
|
||||
@ -474,7 +474,7 @@ class NTKScalingRotaryEmbedding(RotaryEmbedding):
|
||||
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
||||
is_neox_style, dtype)
|
||||
|
||||
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
||||
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
||||
base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
|
||||
inv_freq = super()._compute_inv_freq(base)
|
||||
|
||||
@ -501,7 +501,7 @@ class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
scaling_factor: float,
|
||||
dtype: torch.dtype,
|
||||
@ -582,7 +582,7 @@ class YaRNScalingRotaryEmbedding(RotaryEmbedding):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
scaling_factor: float,
|
||||
dtype: torch.dtype,
|
||||
@ -644,7 +644,7 @@ class Phi3LongRoPEScaledRotaryEmbedding(nn.Module):
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
original_max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
dtype: torch.dtype,
|
||||
short_factor: list[float],
|
||||
@ -769,7 +769,7 @@ class DeepseekScalingRotaryEmbedding(RotaryEmbedding):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
scaling_factor: float,
|
||||
dtype: torch.dtype,
|
||||
@ -877,7 +877,7 @@ class Llama3RotaryEmbedding(RotaryEmbedding):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
dtype: torch.dtype,
|
||||
scaling_factor: float,
|
||||
@ -892,7 +892,7 @@ class Llama3RotaryEmbedding(RotaryEmbedding):
|
||||
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
||||
is_neox_style, dtype)
|
||||
|
||||
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
||||
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
||||
inv_freqs = super()._compute_inv_freq(base)
|
||||
low_freq_wavelen = self.orig_max_position / self.low_freq_factor
|
||||
high_freq_wavelen = self.orig_max_position / self.high_freq_factor
|
||||
@ -923,14 +923,14 @@ class Llama4VisionRotaryEmbedding(RotaryEmbedding):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
||||
is_neox_style, dtype)
|
||||
|
||||
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
||||
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
||||
inv_freqs = super()._compute_inv_freq(base)
|
||||
inv_freqs = inv_freqs[:(self.rotary_dim // 2)]
|
||||
return inv_freqs
|
||||
@ -989,7 +989,7 @@ class MRotaryEmbedding(RotaryEmbedding):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
dtype: torch.dtype,
|
||||
mrope_section: Optional[list[int]] = None,
|
||||
@ -1529,7 +1529,7 @@ class DualChunkRotaryEmbedding(CustomOp):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
dtype: torch.dtype,
|
||||
chunk_size: int,
|
||||
@ -1558,7 +1558,7 @@ class DualChunkRotaryEmbedding(CustomOp):
|
||||
q_inter_cache,
|
||||
persistent=False)
|
||||
|
||||
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
||||
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
||||
"""Compute the inverse frequency."""
|
||||
# NOTE(woosuk): The HF implementation uses `torch.arange(...).float()`.
|
||||
# However, we use `torch.arange(..., dtype=torch.float)` instead to
|
||||
@ -1705,7 +1705,7 @@ def get_rope(
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool = True,
|
||||
rope_scaling: Optional[dict[str, Any]] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
|
@ -141,7 +141,7 @@ class MiniMaxText01RotaryEmbedding(CustomOp):
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position: int,
|
||||
base: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
cache_dtype: torch.dtype,
|
||||
) -> None:
|
||||
@ -155,10 +155,7 @@ class MiniMaxText01RotaryEmbedding(CustomOp):
|
||||
cache = self._compute_cos_sin_cache().to(cache_dtype)
|
||||
self.register_buffer("cos_sin_cache", cache, persistent=False)
|
||||
|
||||
def _compute_inv_freq(
|
||||
self,
|
||||
base: Union[int, float],
|
||||
) -> torch.Tensor:
|
||||
def _compute_inv_freq(self, base: float) -> torch.Tensor:
|
||||
"""Compute the inverse frequency."""
|
||||
inv_freq = 1.0 / (base**(torch.arange(
|
||||
0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
|
||||
|
Reference in New Issue
Block a user