mirror of
https://github.com/vllm-project/vllm.git
synced 2025-10-20 14:53:52 +08:00
[misc] split engine_model into json file for nsys profile tool (#23117)
Signed-off-by: Grace Ho <grho@nvidia.com> Signed-off-by: Grace Ho <146482179+gracehonv@users.noreply.github.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
This commit is contained in:
@ -36,8 +36,7 @@ profiling and analyzing nsys profile output.
|
||||
## Notes
|
||||
|
||||
- Make sure you have pandas installed.
|
||||
- Make sure nsys is installed, and specify the path to the `nsys` command with
|
||||
`--nsys_cmd` if it is not in your PATH.
|
||||
- Make sure [nsys](https://developer.nvidia.com/nsight-systems/get-started) is installed, and specify the path to the `nsys` command with `--nsys_cmd` if it is not in your PATH.
|
||||
- For more details on available engines and models, see the help string in
|
||||
the script or run:
|
||||
|
||||
@ -135,34 +134,31 @@ time which would cause a difference for the overall category.
|
||||
|
||||
## Example 3: add new classification for a new model
|
||||
|
||||
Suppose there's a new model ABC that is available for engine DEF, and say there
|
||||
are 4 kernels to be classified into "gemm" and "attn", where the gemm kernels
|
||||
have names with "*H*" or "*I*" in them, and attn kernels have names with "*J*"
|
||||
or "*K*" in them, add a new entry like so:
|
||||
To create a new engine DEF with model ABC, just add another json file in the same directory as
|
||||
gputrc2graph.py with the same format as the other json files. The script will automatically pick up all the json files in the same directory as engine/model specifications.
|
||||
|
||||
```python
|
||||
engine_model = {
|
||||
'DEF': {
|
||||
'ABC': {
|
||||
'layer_anno': {
|
||||
'Stage': {
|
||||
'.*': 'layer',
|
||||
},
|
||||
'Substage': {
|
||||
'H|I': 'gemm',
|
||||
'J|K': 'attn',
|
||||
'CUDA mem': 'non-gpu-H_D_memops',
|
||||
'.*': 'misc'
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
'vllm': {...}
|
||||
Then, for this new model, suppose there are 4 kernels to be classified into "gemm" and "attn", where the gemm kernels
|
||||
have names with "*H*" or "*I*" in them, and attn kernels have names with "*J*"
|
||||
or "*K*" in them, just add another .json file in the same directory as
|
||||
gputrc2graph.py with the same format as the other json files, like the following:
|
||||
|
||||
```json
|
||||
{
|
||||
"DEF": {
|
||||
"ABC": {
|
||||
"H|I": "gemm",
|
||||
"J|K": "attn",
|
||||
"CUDA mem": "non-gpu-H_D_memops",
|
||||
".*": "misc"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Basically Substage is a dictionary with a list of key/value pairs, where the
|
||||
keys are regex's of the kernel names to be classified, and values are the
|
||||
classification bins which one wishes to compare across engines/models.
|
||||
Each entry in the dictionary consists of:
|
||||
|
||||
- key: a regex used to classify the kernels
|
||||
- value: the category to classify the kernels into.
|
||||
|
||||
The last 2 entries are common for all engine/models, consisting of CUDA memory
|
||||
operations and a 'misc' for anything that's leftover and can't be classified.
|
||||
@ -173,3 +169,6 @@ like the following:
|
||||
```bash
|
||||
--infile new.nsys-rep,DEF,ABC,<runtime>
|
||||
```
|
||||
|
||||
If the engine_DEF.json file already exists, just add the model as a new node in
|
||||
the existing engine file, after the other models.
|
||||
|
@ -15,132 +15,18 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# helper data class for annotating kernels
|
||||
class EngineModelData:
|
||||
# engine + model mappings
|
||||
engine_model = {
|
||||
'vllm': {
|
||||
'llama': {
|
||||
'layer_anno': {
|
||||
'Stage': {
|
||||
'.*': 'layer',
|
||||
},
|
||||
'Substage': {
|
||||
'gemm': 'gemm',
|
||||
'fused_moe_kernel|GroupProblemShape|group_gemm_starts':
|
||||
'moe_gemm', #llama4
|
||||
'moe|sigmoid': 'moe', #llama4
|
||||
'CatArrayBatched|prepare_inputs': 'prepare_next',
|
||||
'flash': 'attn',
|
||||
'ncclDevKernel|cross_device_reduce':
|
||||
'nccl_and_custom_ar',
|
||||
'_norm_': 'norm',
|
||||
'act_and_mul_': 'silu',
|
||||
'rotary_embedding_kernel': 'rope',
|
||||
'SoftMax': 'softmax',
|
||||
'elementwise': 'elementwise',
|
||||
'fp8_quant': 'quantize',
|
||||
'reduce_kernel': 'reduce',
|
||||
'triton': 'triton_kernel',
|
||||
'CUDA mem': 'non-gpu-H_D_memops',
|
||||
'.*': 'misc'
|
||||
}
|
||||
}
|
||||
},
|
||||
'ds': {
|
||||
'layer_anno': {
|
||||
'Stage': {
|
||||
'.*': 'layer',
|
||||
},
|
||||
'Substage': {
|
||||
'block_fp8|gemm_fp8_blockwise':
|
||||
'block_fp8_gemm',
|
||||
'fused_moe_kernel|_group_gemm|GroupProblemShape|GemmUniversal':
|
||||
'moe_gemm',
|
||||
'gemm|matmul|nvjet':
|
||||
'gemm',
|
||||
'moe|sigmoid|expert':
|
||||
'moe',
|
||||
'_fwd_|FlashAttn|_mla_|_attn_':
|
||||
'attn',
|
||||
'CatArrayBatched':
|
||||
'prepare_next',
|
||||
'ncclDevKernel|cross_device_reduce':
|
||||
'nccl_and_custom_ar',
|
||||
'Norm|_norm_':
|
||||
'norm',
|
||||
'sbtopk':
|
||||
'topk',
|
||||
'act_and_mul_':
|
||||
'activation',
|
||||
'compute_position_kernel':
|
||||
'rope',
|
||||
'elementwise':
|
||||
'elementwise',
|
||||
'fp8_quant|quant_fp8|cvt_fp16_to_fp4':
|
||||
'quantize',
|
||||
'reduce':
|
||||
'reduce',
|
||||
'SoftMax':
|
||||
'softmax',
|
||||
'triton':
|
||||
'triton_kernel',
|
||||
'CUDA mem':
|
||||
'non-gpu-H_D_memops',
|
||||
'.*':
|
||||
'misc'
|
||||
}
|
||||
}
|
||||
},
|
||||
'gpt-oss': {
|
||||
'layer_anno': {
|
||||
'Stage': {
|
||||
'.*': 'layer',
|
||||
},
|
||||
'Substage': {
|
||||
'block_fp8|gemm_fp8_blockwise':
|
||||
'block_fp8_gemm',
|
||||
'fused_moe_kernel|_group_gemm|GroupProblemShape|GemmUniversal|bmm_'
|
||||
# this section is triton_moe_gemm
|
||||
'|matmul_ogs_|_topk_forward|_combined_routing'
|
||||
'|_sum_bitmatrix_rows|_compute_writeback_idx':
|
||||
'moe_gemm',
|
||||
'gemm|matmul|nvjet':
|
||||
'gemm',
|
||||
'moe|sigmoid|expert|splitKreduce':
|
||||
'moe',
|
||||
'_fwd_|FlashAttn|_mla_|_attn_|_flash_|flash::prepare_varlen|fmha':
|
||||
'attn',
|
||||
'CatArrayBatched':
|
||||
'prepare_next',
|
||||
'ncclDevKernel|cross_device_reduce':
|
||||
'nccl_and_custom_ar',
|
||||
'Norm|_norm_':
|
||||
'norm',
|
||||
'sbtopk':
|
||||
'topk',
|
||||
'act_and_mul_':
|
||||
'activation',
|
||||
'compute_position_kernel':
|
||||
'rope',
|
||||
'elementwise':
|
||||
'elementwise',
|
||||
'fp8_quant|quant_fp8|cvt_fp16_to_fp4|quantize':
|
||||
'quantize',
|
||||
'reduce':
|
||||
'reduce',
|
||||
'SoftMax':
|
||||
'softmax',
|
||||
'triton':
|
||||
'triton_kernel',
|
||||
'CUDA mem':
|
||||
'non-gpu-H_D_memops',
|
||||
'.*':
|
||||
'misc'
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
def load_engine_model():
|
||||
""" returns engine_model built from all json files in the current dir """
|
||||
import glob
|
||||
import json
|
||||
engine_model = {}
|
||||
|
||||
json_files = glob.glob(
|
||||
os.path.join(os.path.dirname(__file__) or ".", "*.json"))
|
||||
for fname in json_files:
|
||||
with open(fname, encoding="utf-8") as f:
|
||||
engine_model.update(json.load(f))
|
||||
return engine_model
|
||||
|
||||
|
||||
class GPUTrace2Graph:
|
||||
@ -148,8 +34,7 @@ class GPUTrace2Graph:
|
||||
Parses output of nsys report, generates csv and bar chart output
|
||||
"""
|
||||
|
||||
def __init__(self, nsys_cmd):
|
||||
self.nsys_cmd = nsys_cmd
|
||||
def __init__(self):
|
||||
import pandas as pd # avoid importing till needed
|
||||
self.pd = pd
|
||||
self.pd.options.mode.copy_on_write = True
|
||||
@ -227,7 +112,7 @@ class GPUTrace2Graph:
|
||||
title = 'Model_Engine'
|
||||
x = 'Model_Engine'
|
||||
y = 'Elapsed Time (sec)'
|
||||
color = 'Substage'
|
||||
color = 'Category'
|
||||
""" generate kernel mapping table """
|
||||
# Sort Model_Engine categories by last field after underscore
|
||||
df['Model_Engine'] = self.pd.Categorical(
|
||||
@ -249,14 +134,13 @@ class GPUTrace2Graph:
|
||||
Generate data table with columns per Model_Engine into result.html
|
||||
"""
|
||||
pivot_df = df.pivot_table(values='Elapsed Time (sec)',
|
||||
index='Substage',
|
||||
index='Category',
|
||||
columns='Model_Engine',
|
||||
aggfunc='sum',
|
||||
observed=False).round(2)
|
||||
# Add sum row at bottom
|
||||
pivot_df.loc['total_elapsed_sec'] = pivot_df.sum()
|
||||
pivot_df.fillna('').to_html('temp.html')
|
||||
print('got')
|
||||
with (open(f'{output_name}.html', 'a', encoding='utf-8') as
|
||||
outfile, open('temp.html', encoding='utf-8') as infile):
|
||||
outfile.write(infile.read())
|
||||
@ -264,23 +148,22 @@ class GPUTrace2Graph:
|
||||
|
||||
print(f'Finished generating: \n'
|
||||
f' {output_name}.html for stack bar chart \n'
|
||||
f' {output_name}.csv for Kernel-Substage mapping')
|
||||
f' {output_name}.csv for Kernel-Category mapping')
|
||||
|
||||
def anno_gpu_kernname(self, df, mapping):
|
||||
""" add "stage" and "substage" columns """
|
||||
""" add "Category" column """
|
||||
|
||||
def anno_gpu_kernname_helper(name, stage):
|
||||
for kern_name, val in mapping['layer_anno'][stage].items():
|
||||
def anno_gpu_kernname_helper(name):
|
||||
for kern_name, val in mapping.items():
|
||||
if re.search(kern_name, name):
|
||||
return val
|
||||
|
||||
for stage in ['Stage', 'Substage']:
|
||||
df[stage] = df['Name'].apply(anno_gpu_kernname_helper, stage=stage)
|
||||
df['Category'] = df['Name'].apply(anno_gpu_kernname_helper)
|
||||
|
||||
def make_nongpu_row(self, df, nongpu_sec):
|
||||
""" this will append non-gpu time entry at end of df """
|
||||
nongpu_row = self.pd.DataFrame([df.iloc[-1]])
|
||||
nongpu_row['Substage'] = nongpu_row['Name'] = 'CPU(non-GPU)'
|
||||
nongpu_row['Category'] = nongpu_row['Name'] = 'CPU(non-GPU)'
|
||||
nongpu_row['Instances'] = 1
|
||||
nongpu_row['Elapsed Time (sec)'] = nongpu_sec
|
||||
return (nongpu_row)
|
||||
@ -302,7 +185,7 @@ class GPUTrace2Graph:
|
||||
logger.info('generating %s', new_file)
|
||||
return True
|
||||
|
||||
def gen_sum_file(self, file):
|
||||
def gen_sum_file(self, file, nsys_cmd):
|
||||
"""
|
||||
generates sum file from nsys trace with times per kernel and
|
||||
returns the name of the sum file
|
||||
@ -318,17 +201,21 @@ class GPUTrace2Graph:
|
||||
sum_file = f'{file_dir}/{file_name}_cuda_gpu_kernel_tracesum.csv'
|
||||
if self.should_gen_file(nsys_stats_file, file):
|
||||
cmd = [
|
||||
self.nsys_cmd, 'stats', '-r', 'cuda_gpu_trace', file, '-o',
|
||||
nsys_cmd, 'stats', '-r', 'cuda_gpu_trace', file, '-o',
|
||||
f'{file_dir}/{file_name}'
|
||||
]
|
||||
cmd_str = ' '.join(cmd)
|
||||
logger.info('+ %s', cmd_str)
|
||||
# estimate time based on calibrated 240M/min
|
||||
file_size_mb = os.path.getsize(file) / 1e6
|
||||
logger.info(
|
||||
'nsys stats for %.2f MB file expected to take %.2f min',
|
||||
file_size_mb, file_size_mb / 240)
|
||||
try:
|
||||
subprocess.run(cmd)
|
||||
subprocess.run(cmd, check=True)
|
||||
except Exception:
|
||||
logger.error(
|
||||
"%s failed, specify --nsys_cmd for correct nsys path",
|
||||
cmd_str)
|
||||
logger.error("%s failed; Use --nsys_cmd to specify nsys path",
|
||||
cmd_str)
|
||||
exit(1)
|
||||
logger.info('generating non-overalapped sum %s', sum_file)
|
||||
self.gen_nonoverlapped_sum_from_gputrace(nsys_stats_file, sum_file)
|
||||
@ -336,7 +223,7 @@ class GPUTrace2Graph:
|
||||
logger.info('Finished generating %s', sum_file)
|
||||
return sum_file
|
||||
|
||||
def gen_graph(self, in_file, out_dir, title):
|
||||
def gen_graph(self, in_file, out_dir, title, nsys_cmd, engine_model):
|
||||
""" generates graph and csv file from in_file into out_dir """
|
||||
# Initialize an empty DataFrame to store combined data
|
||||
combined_df = self.pd.DataFrame()
|
||||
@ -345,17 +232,16 @@ class GPUTrace2Graph:
|
||||
file_name = os.path.basename(file)
|
||||
if not file_dir:
|
||||
file_dir = '.'
|
||||
sum_file = self.gen_sum_file(file)
|
||||
sum_file = self.gen_sum_file(file, nsys_cmd)
|
||||
# read kernel summary file
|
||||
df = self.pd.read_csv(sum_file)
|
||||
# annotate kernel to their categories
|
||||
assert EngineModelData.engine_model.get(engine)
|
||||
assert EngineModelData.engine_model[engine].get(model)
|
||||
assert engine_model.get(engine), f'engine {engine} unknown'
|
||||
assert engine_model[engine].get(model), f'model {model} unknown'
|
||||
# remove nsys-rep from file_name for shorter x-label
|
||||
file_name = file_name.replace('.nsys-rep', '')
|
||||
df['Model_Engine'] = f'{model}_{engine}_{file_name}_{idx}'
|
||||
self.anno_gpu_kernname(df,
|
||||
EngineModelData.engine_model[engine][model])
|
||||
self.anno_gpu_kernname(df, engine_model[engine][model])
|
||||
# patch in non-gpu time
|
||||
gpu_sec = round(df['Elapsed Time (sec)'].sum(), 1)
|
||||
total_sec = round(float(total_sec), 1)
|
||||
@ -393,12 +279,12 @@ def main():
|
||||
"--out_dir results/ --title \"Model=gpt-oss vLLM chart\""),
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter)
|
||||
|
||||
# Build help string showing available engine/model combinations
|
||||
engine_model_help = []
|
||||
for engine, models in EngineModelData.engine_model.items():
|
||||
model_list = list(models.keys())
|
||||
engine_model_help.append(f"{engine}:[{','.join(model_list)}]")
|
||||
engine_model_str = ' '.join(engine_model_help)
|
||||
# load supported engine_model
|
||||
engine_model_supported = load_engine_model()
|
||||
# Get a string representation of supported engine/model combinations
|
||||
engine_model_supported_str = ', '.join(
|
||||
f"{engine}:[{', '.join(models.keys())}]"
|
||||
for engine, models in engine_model_supported.items())
|
||||
parser.add_argument(
|
||||
'--in_file',
|
||||
type=parse_tuple,
|
||||
@ -408,7 +294,7 @@ def main():
|
||||
'separated by space. Elapsed_nonprofiled_sec is runtime without '
|
||||
'profiling used to calculate non-gpu time. Specify 0 to use '
|
||||
'elapsed time from nsys-rep but that might inflate non-gpu time. '
|
||||
f'Available engine:[model] are: {engine_model_str} '
|
||||
f'Available engine:[model] are: {engine_model_supported_str} '
|
||||
f'Example: --infile d1.nsys-rep,vllm,llama,100 '
|
||||
'd2.nsys-rep,vllm,gpt-oss,102'),
|
||||
required=True)
|
||||
@ -418,8 +304,9 @@ def main():
|
||||
help=('nsys cmd, e.g. /usr/bin/nsys, Default: nsys'),
|
||||
default="nsys")
|
||||
args = parser.parse_args()
|
||||
gputrace = GPUTrace2Graph(args.nsys_cmd)
|
||||
gputrace.gen_graph(args.in_file, args.out_dir, args.title)
|
||||
gputrace = GPUTrace2Graph()
|
||||
gputrace.gen_graph(args.in_file, args.out_dir, args.title, args.nsys_cmd,
|
||||
engine_model_supported)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
63
tools/profiler/nsys_profile_tools/vllm_engine_model.json
Normal file
63
tools/profiler/nsys_profile_tools/vllm_engine_model.json
Normal file
@ -0,0 +1,63 @@
|
||||
{
|
||||
"vllm": {
|
||||
"llama": {
|
||||
"fused_moe_kernel|GroupProblemShape|group_gemm_starts|bmm_|GemmUniversal": "moe_gemm",
|
||||
"gemm|nvjet": "gemm",
|
||||
"moe|sigmoid": "moe",
|
||||
"CatArrayBatched|prepare_inputs": "prepare_next",
|
||||
"ncclDevKernel|cross_device_reduce": "nccl_and_custom_ar",
|
||||
"_norm_|Norm": "norm",
|
||||
"act_and_mul_": "activation",
|
||||
"Rotary": "rope",
|
||||
"SoftMax": "softmax",
|
||||
"flash|fmha": "attn",
|
||||
"elementwise": "elementwise",
|
||||
"fp8_quant|cvt_": "quantize",
|
||||
"reduce_kernel": "reduce",
|
||||
"triton": "triton_kernel",
|
||||
"CUDA mem": "non-gpu-H_D_memops",
|
||||
".*": "misc"
|
||||
},
|
||||
"ds": {
|
||||
"block_fp8|gemm_fp8_blockwise": "block_fp8_gemm",
|
||||
"fused_moe_kernel|_group_gemm|GroupProblemShape|GemmUniversal|bmm_": "moe_gemm",
|
||||
"gemm|matmul|nvjet": "gemm",
|
||||
"moe|sigmoid|expert": "moe",
|
||||
"CatArrayBatched": "prepare_next",
|
||||
"ncclDevKernel|cross_device_reduce": "nccl_and_custom_ar",
|
||||
"Norm|_norm_": "norm",
|
||||
"sbtopk": "topk",
|
||||
"act_and_mul_": "activation",
|
||||
"compute_position_kernel": "rope",
|
||||
"elementwise": "elementwise",
|
||||
"fp8_quant|quant_fp8|cvt_": "quantize",
|
||||
"reduce": "reduce",
|
||||
"SoftMax": "softmax",
|
||||
"_fwd_|FlashAttn|_mla_|_attn_|fmha": "attn",
|
||||
"triton": "triton_kernel",
|
||||
"topk": "topk",
|
||||
"CUDA mem": "non-gpu-H_D_memops",
|
||||
".*": "misc"
|
||||
},
|
||||
"gpt-oss": {
|
||||
"block_fp8|gemm_fp8_blockwise": "block_fp8_gemm",
|
||||
"fused_moe_kernel|_group_gemm|GroupProblemShape|GemmUniversal|bmm_|matmul_ogs_|_topk_forward|_combined_routing|_sum_bitmatrix_rows|_compute_writeback_idx": "moe_gemm",
|
||||
"gemm|matmul|nvjet": "gemm",
|
||||
"moe|sigmoid|expert|splitKreduce": "moe",
|
||||
"CatArrayBatched": "prepare_next",
|
||||
"ncclDevKernel|cross_device_reduce": "nccl_and_custom_ar",
|
||||
"Norm|_norm_": "norm",
|
||||
"topk": "topk",
|
||||
"act_and_mul_": "activation",
|
||||
"compute_position_kernel": "rope",
|
||||
"elementwise": "elementwise",
|
||||
"fp8_quant|quant_fp8|cvt_|quantize": "quantize",
|
||||
"reduce": "reduce",
|
||||
"SoftMax": "softmax",
|
||||
"_fwd_|FlashAttn|_mla_|_attn_|_flash_|flash::prepare_varlen|fmha": "attn",
|
||||
"triton": "triton_kernel",
|
||||
"CUDA mem": "non-gpu-H_D_memops",
|
||||
".*": "misc"
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user