Files
vllm-dev/vllm/v1/attention/backends/flashinfer.py
Tyler Michael Smith f8768f5244 Remove executable flag on a few files
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-07-02 09:58:53 -04:00

675 lines
28 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention layer with FlashInfer."""
from __future__ import annotations
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional
import torch
from flashinfer import (BatchDecodeWithPagedKVCacheWrapper,
BatchPrefillWithPagedKVCacheWrapper,
MultiLevelCascadeAttentionWrapper)
import vllm.envs as envs
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionType)
from vllm.attention.layer import Attention
from vllm.config import VllmConfig, get_layers_from_vllm_config
from vllm.logger import init_logger
from vllm.v1.attention.backends.flash_attn import use_cascade_attention
from vllm.v1.attention.backends.utils import (AttentionMetadataBuilder,
CommonAttentionMetadata,
get_kv_cache_layout)
from vllm.v1.kv_cache_interface import AttentionSpec
from vllm.v1.worker.block_table import BlockTable
if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.worker.gpu_input_batch import InputBatch
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
FLASHINFER_WORKSPACE_BUFFER_SIZE = 256 * 1024 * 1024
logger = init_logger(__name__)
class FlashInferBackend(AttentionBackend):
accept_output_buffer: bool = True
@staticmethod
def get_supported_head_sizes() -> list[int]:
return [64, 128, 256]
@staticmethod
def get_name() -> str:
return "FLASHINFER_VLLM_V1"
@staticmethod
def get_impl_cls() -> type[FlashInferImpl]:
return FlashInferImpl
@staticmethod
def get_metadata_cls() -> type[FlashInferMetadata]:
return FlashInferMetadata
@staticmethod
def get_builder_cls() -> type[FlashInferMetadataBuilder]:
return FlashInferMetadataBuilder
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> tuple[int, ...]:
return (num_blocks, 2, block_size, num_kv_heads, head_size)
@staticmethod
def get_kv_cache_stride_order() -> tuple[int, ...]:
# `stride_order` indicates the permutation that gets us from
# `get_kv_cache_shape` to the actual memory layout we want.
cache_layout = get_kv_cache_layout()
if cache_layout == "NHD":
stride_order = (0, 1, 2, 3, 4)
elif cache_layout == "HND":
stride_order = (0, 1, 3, 2, 4)
else:
raise ValueError(f"Unknown cache layout format {cache_layout}.")
return stride_order
@dataclass
class PerLayerParameters:
"""
Currently, FlashInfer backend only support models in which all layers share
the same values for the following hyperparameters.
"""
window_left: int
logits_soft_cap: Optional[float]
sm_scale: float
def get_per_layer_parameters(
vllm_config: VllmConfig) -> dict[str, PerLayerParameters]:
"""
Scan all attention layers and determine some hyperparameters
to use during `plan`.
"""
layers = get_layers_from_vllm_config(vllm_config, Attention)
per_layer_params: dict[str, PerLayerParameters] = {}
for key, layer in layers.items():
impl = layer.impl
assert isinstance(impl, FlashInferImpl)
# Infer hyperparameters from the attention layer
window_size = impl.sliding_window
window_left = window_size[0] if window_size is not None else -1
logits_soft_cap = impl.logits_soft_cap
sm_scale = impl.scale
per_layer_params[key] = PerLayerParameters(window_left,
logits_soft_cap, sm_scale)
return per_layer_params
def infer_global_hyperparameters(
per_layer_params: dict[str, PerLayerParameters]) -> PerLayerParameters:
"""
Currently, FlashInfer backend only support models in which all layers share
the same values for the following hyperparameters:
- `window_left`
- `logits_soft_cap`
- `sm_scale`
So this function asserts that all layers share the same values for these
hyperparameters and returns the global values.
"""
assert len(per_layer_params) > 0, "No attention layers found in the model."
param_sets = list(per_layer_params.values())
global_params = param_sets[0]
for params in param_sets:
assert params == global_params, (
"FlashInfer backend currently only supports models in which all "
"layers share the same values for the following hyperparameters: "
"`window_left`, `logits_soft_cap`, `sm_scale`.")
return global_params
@dataclass
class FlashInferMetadata:
num_actual_tokens: int # Number of tokens excluding padding.
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
# the batch, used to index into subquery. E.g., if the subquery length
# is [4, 6], it is [0, 4, 10].
qo_indptr: torch.Tensor
# An example for paged_kv_indices, paged_kv_indptr:
# request 1, page indices [0, 5, 8]
# request 2, page indices [1, 6, 7]
# request 3, page indices [3, 4]
# paged_kv_indices is a concatenation of page indices of all requests:
# [0, 5, 8, 1, 6, 7, 3, 4]
# paged_kv_indptr is used to index into paged_kv_indices:
# [0, 3, 6, 8]
# The indptr of the paged kv cache, shape: [batch_size + 1]
paged_kv_indptr: torch.Tensor
# The page indices of the paged kv cache
paged_kv_indices: torch.Tensor
# The number of entries in the last page of each request in
# the paged kv cache, shape: [batch_size]
paged_kv_last_page_len: torch.Tensor
# The number of query/output heads
num_qo_heads: int
# The number of key/value heads
num_kv_heads: int
# The dimension of the attention heads
head_dim: int
# Block size of vllm
page_size: int
# The data type of the paged kv cache
data_type: torch.dtype
# The data type of the query
q_data_type: torch.dtype
slot_mapping: torch.Tensor
# For handling prefill decode split
num_decodes: int
num_decode_tokens: int
num_prefills: int
num_prefill_tokens: int
# For cascade attention.
use_cascade: bool
shared_qo_indptr: Optional[torch.Tensor] = None
shared_kv_page_indptr: Optional[torch.Tensor] = None
shared_kv_page_indices: Optional[torch.Tensor] = None
shared_kv_last_page_len: Optional[torch.Tensor] = None
prefill_wrapper: Optional[BatchPrefillWithPagedKVCacheWrapper] = None
decode_wrapper: Optional[BatchDecodeWithPagedKVCacheWrapper] = None
cascade_wrapper: Optional[MultiLevelCascadeAttentionWrapper] = None
@property
def query_start_loc(self):
# The GPUModelRunner expects to be able to access this property.
return self.qo_indptr
def __post_init__(self):
# Refer to
# https://github.com/flashinfer-ai/flashinfer/blob/3d55c71a62052c590c130897d3a3db49b14fcc34/include/flashinfer/utils.cuh#L157
supported_head_sizes = FlashInferBackend.get_supported_head_sizes()
if self.head_dim is not None and self.head_dim \
not in supported_head_sizes:
raise ValueError(
f"Only {supported_head_sizes} are supported for head_dim,",
f" received {self.head_dim}.")
class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
def __init__(self, runner: GPUModelRunner, kv_cache_spec: AttentionSpec,
block_table: BlockTable):
self.runner = runner
self._workspace_buffer = None
self._prefill_wrapper = None # Wrapper for prefill/append
self._decode_wrapper = None # Wrapper for decode
self._cascade_wrapper = None # Wrapper for cascade attention
# Global hyperparameters shared by all attention layers
self.global_hyperparameters: Optional[PerLayerParameters] = None
self.vllm_config = runner.vllm_config
self.kv_cache_spec = kv_cache_spec
self.block_table = block_table
def reorder_batch(self, input_batch: InputBatch,
scheduler_output: SchedulerOutput) -> bool:
# We now want to reorder the batch so that the "decode" requests are and
# the front and the "prefill" requests are at the using the least amount
# swaps possible. (NOTE for now we loosely use "decode" to mean requests
# where attention is likely memory-bound and "prefill" to mean requests
# where attention is likely compute-bound, TODO(lucas): figure out a
# better naming here)
decodes = []
prefills = []
num_decode_tokens = 0
num_prefill_tokens = 0
for i, req_id in enumerate(input_batch.req_ids):
num_tokens = scheduler_output.num_scheduled_tokens[req_id]
# for now treat 1 scheduled token as "decode" even if its not,
# we should update this to something like < 8 in the future but
# currently the decode run only supports num_tokens = 1
if num_tokens == 1:
decodes.append(i)
num_decode_tokens += num_tokens
else:
prefills.append(i)
num_prefill_tokens += num_tokens
# We hope that this is fairly minimal since decodes
# should be around for a number of iterations so hopefully they are
# relatively stationary (and new request are generally appended to the
# persistent batch so already should be at the back)
# To achieve this we loop over the decodes in descending order and
# the prefills in ascending order. We swap decodes from the "back"
# i.e. past where the last decode should be in the reodorered with
# prefills from the front of the batch.
# `decodes` and `prefills` are already in ascending order just based on
# the above loop
num_decodes = len(decodes)
num_prefills = len(prefills)
modified_batch = False
for i in range(1, min(num_decodes, num_prefills) + 1):
# If the decode is at the "back" of the batch, i, we can swap it
# with the prefill closest to the front of the batch
decode_idx = decodes[num_decodes - i]
if decode_idx < num_decodes:
break
input_batch.swap_states(prefills[i - 1], decode_idx)
modified_batch = True
# Save for next `build` call
# TODO(lucas): this is a bit of a hack, we should probably have a
# better way of doing this
self._num_decodes = num_decodes
self._num_prefills = num_prefills
self._num_decode_tokens = num_decode_tokens
self._num_prefill_tokens = num_prefill_tokens
return modified_batch
def _get_workspace_buffer(self):
if self._workspace_buffer is None:
self._workspace_buffer = torch.empty(
FLASHINFER_WORKSPACE_BUFFER_SIZE,
dtype=torch.uint8,
device=self.runner.device)
return self._workspace_buffer
def _get_prefill_wrapper(self):
if self._prefill_wrapper is None:
self._prefill_wrapper = BatchPrefillWithPagedKVCacheWrapper(
self._get_workspace_buffer(), get_kv_cache_layout())
return self._prefill_wrapper
def _get_decode_wrapper(self):
if self._decode_wrapper is None:
num_qo_heads = (self.runner.model_config.get_num_attention_heads(
self.runner.parallel_config))
num_kv_heads = self.runner.model_config.get_num_kv_heads(
self.runner.parallel_config)
use_tensor_cores = envs.VLLM_FLASHINFER_FORCE_TENSOR_CORES or (
num_qo_heads // num_kv_heads > 4)
self._decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
self._get_workspace_buffer(),
get_kv_cache_layout(),
use_tensor_cores=use_tensor_cores)
return self._decode_wrapper
def _get_cascade_wrapper(self):
if self._cascade_wrapper is None:
self._cascade_wrapper = MultiLevelCascadeAttentionWrapper(
2, self._get_workspace_buffer(), get_kv_cache_layout())
return self._cascade_wrapper
def _plan(self, attn_metadata: FlashInferMetadata):
if self.global_hyperparameters is None:
self.global_hyperparameters = infer_global_hyperparameters(
get_per_layer_parameters(self.vllm_config))
if attn_metadata.use_cascade:
attn_metadata.cascade_wrapper = self._get_cascade_wrapper()
attn_metadata.cascade_wrapper.plan(
[attn_metadata.shared_qo_indptr, attn_metadata.qo_indptr],
[
attn_metadata.shared_kv_page_indptr,
attn_metadata.paged_kv_indptr
],
[
attn_metadata.shared_kv_page_indices,
attn_metadata.paged_kv_indices
],
[
attn_metadata.shared_kv_last_page_len,
attn_metadata.paged_kv_last_page_len
],
attn_metadata.num_qo_heads,
attn_metadata.num_kv_heads,
attn_metadata.head_dim,
attn_metadata.page_size,
causal=True,
sm_scale=self.global_hyperparameters.sm_scale,
window_left=self.global_hyperparameters.window_left,
logits_soft_cap=self.global_hyperparameters.logits_soft_cap,
q_data_type=attn_metadata.q_data_type,
)
else:
# Regular attention (common case).
# Decodes are at the front and prefills are at the back,
# according to reorder_batch()
if self._num_prefills > 0:
# Decodes are first so prefills start after the last decode
prefill_start = self._num_decodes
attn_metadata.prefill_wrapper = self._get_prefill_wrapper()
assert attn_metadata.qo_indptr[prefill_start:].shape[
0] == self._num_prefills + 1
assert attn_metadata.paged_kv_indptr[prefill_start:].shape[
0] == self._num_prefills + 1
assert attn_metadata.paged_kv_last_page_len[
prefill_start:].shape[0] == self._num_prefills
# Since prefill_wrapper.run() will be called with
# query[num_decode_tokens:] we need to adjust the qo_indptr
# to be relative to the start of the prefill queries.
qo_indptr = attn_metadata.qo_indptr[
prefill_start:] - attn_metadata.qo_indptr[prefill_start]
attn_metadata.prefill_wrapper.plan(
qo_indptr,
attn_metadata.paged_kv_indptr[prefill_start:],
attn_metadata.paged_kv_indices,
attn_metadata.paged_kv_last_page_len[prefill_start:],
attn_metadata.num_qo_heads,
attn_metadata.num_kv_heads,
attn_metadata.head_dim,
attn_metadata.page_size,
causal=True,
sm_scale=self.global_hyperparameters.sm_scale,
window_left=self.global_hyperparameters.window_left,
logits_soft_cap=self.global_hyperparameters.
logits_soft_cap,
q_data_type=attn_metadata.q_data_type,
kv_data_type=attn_metadata.data_type,
)
if self._num_decodes > 0:
attn_metadata.decode_wrapper = self._get_decode_wrapper()
attn_metadata.decode_wrapper.plan(
attn_metadata.paged_kv_indptr[:self._num_decodes + 1],
attn_metadata.paged_kv_indices,
attn_metadata.paged_kv_last_page_len[:self._num_decodes],
attn_metadata.num_qo_heads,
attn_metadata.num_kv_heads,
attn_metadata.head_dim,
attn_metadata.page_size,
# Disable flashinfer's pos encoding and use vllm's rope.
pos_encoding_mode="NONE",
sm_scale=self.global_hyperparameters.sm_scale,
window_left=self.global_hyperparameters.window_left,
logits_soft_cap=self.global_hyperparameters.
logits_soft_cap,
q_data_type=attn_metadata.q_data_type,
kv_data_type=attn_metadata.data_type,
)
def build(self, common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata):
num_reqs = common_attn_metadata.num_reqs
num_actual_tokens = common_attn_metadata.num_actual_tokens
assert self._num_decodes + self._num_prefills == num_reqs
assert (self._num_decode_tokens +
self._num_prefill_tokens == num_actual_tokens)
page_size = self.kv_cache_spec.block_size
device = self.runner.device
qo_indptr = common_attn_metadata.query_start_loc
seq_lens = common_attn_metadata.seq_lens
block_table_tensor = self.block_table.get_device_tensor()[:num_reqs]
slot_mapping = self.block_table.slot_mapping_cpu[:num_actual_tokens].to(
self.runner.device, non_blocking=True).long()
block_table_bounds = (seq_lens + page_size - 1) // page_size
use_cascade = common_prefix_len > 0
if use_cascade:
# Grab the blocks of the shared prefix from the first request.
assert common_prefix_len % page_size == 0
num_common_kv_blocks = common_prefix_len // page_size
shared_qo_indptr = torch.tensor([0, num_actual_tokens],
dtype=torch.int32,
device=device)
shared_kv_page_indptr = torch.tensor([0, num_common_kv_blocks],
dtype=torch.int32,
device=device)
shared_kv_page_indices = block_table_tensor[
0, :num_common_kv_blocks]
shared_kv_last_page_len = torch.tensor([page_size],
dtype=torch.int32,
device=device)
# Remove the blocks of the shared prefix from all requests.
block_table_tensor = block_table_tensor[:, num_common_kv_blocks:]
block_table_bounds -= num_common_kv_blocks
else:
shared_qo_indptr = None
shared_kv_page_indptr = None
shared_kv_page_indices = None
shared_kv_last_page_len = None
mask = (torch.arange(block_table_tensor.size(1),
dtype=block_table_tensor.dtype,
device=block_table_tensor.device).unsqueeze(0)
< block_table_bounds.unsqueeze(1))
paged_kv_indices = block_table_tensor[mask]
paged_kv_indptr = torch.cat([
torch.zeros(1,
dtype=block_table_bounds.dtype,
device=block_table_bounds.device),
block_table_bounds.cumsum(dim=0, dtype=torch.int32)
])
paged_kv_last_page_len = seq_lens % page_size
paged_kv_last_page_len = torch.where(paged_kv_last_page_len == 0,
page_size, paged_kv_last_page_len)
attn_metadata = FlashInferMetadata(
num_actual_tokens=num_actual_tokens,
qo_indptr=qo_indptr,
paged_kv_indptr=paged_kv_indptr,
paged_kv_indices=paged_kv_indices,
paged_kv_last_page_len=paged_kv_last_page_len,
num_qo_heads=self.runner.num_query_heads,
num_kv_heads=self.kv_cache_spec.num_kv_heads,
head_dim=self.kv_cache_spec.head_size,
page_size=page_size,
data_type=self.kv_cache_spec.dtype,
q_data_type=self.runner.dtype,
slot_mapping=slot_mapping,
num_decodes=self._num_decodes,
num_decode_tokens=self._num_decode_tokens,
num_prefills=self._num_prefills,
num_prefill_tokens=self._num_prefill_tokens,
use_cascade=use_cascade,
shared_qo_indptr=shared_qo_indptr,
shared_kv_page_indptr=shared_kv_page_indptr,
shared_kv_page_indices=shared_kv_page_indices,
shared_kv_last_page_len=shared_kv_last_page_len,
)
self._plan(attn_metadata)
return attn_metadata
def use_cascade_attention(self, *args, **kwargs) -> bool:
if self.kv_cache_spec.dtype != self.runner.model_config.dtype:
# TODO: The cascade wrapper currently does not support setting
# kv cache dtype to something different from query dtype.
return False
return use_cascade_attention(*args, **kwargs)
class FlashInferImpl(AttentionImpl):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[int] = None,
use_irope: bool = False,
) -> None:
if use_irope:
logger.warning_once(
"Using irope in FlashInfer is not supported yet, it will fall"
" back to global attention for long context.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
if sliding_window is None:
self.sliding_window = (-1, -1)
else:
self.sliding_window = (sliding_window - 1, 0)
self.kv_cache_dtype = kv_cache_dtype
self.logits_soft_cap = logits_soft_cap
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"FlashInferImpl")
def forward(
self,
layer: torch.nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: FlashInferMetadata,
output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashInfer.
Args:
query: shape = [num_tokens, num_heads, head_size]
key: shape = [num_tokens, num_kv_heads, head_size]
value: shape = [num_tokens, num_kv_heads, head_size]
kv_cache = [num_blocks, 2, block_size, num_kv_heads, head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
assert output is not None, "Output tensor must be provided."
if output_scale is not None:
raise NotImplementedError(
"fused output quantization is not yet supported"
" for FlashInferImpl")
if attn_metadata is None:
# Profiling run.
return output
# IMPORTANT!
# NOTE(woosuk): With piece-wise CUDA graphs, this method is executed in
# eager-mode PyTorch. Thus, we need to be careful about any CPU overhead
# in this method. For example, `view` and `slice` (or `[:n]`) operations
# are surprisingly slow even in the case they do not invoke any GPU ops.
# Minimize the PyTorch ops in this method as much as possible.
# Whenever making a change in this method, please benchmark the
# performance to make sure it does not introduce any overhead.
num_actual_tokens = attn_metadata.num_actual_tokens
if self.kv_sharing_target_layer_name is None:
# Reshape the input keys and values and store them in the cache.
# Skip this if sharing KV cache with an earlier attention layer.
# NOTE(woosuk): Here, key and value are padded while slot_mapping is
# not padded. However, we don't need to do key[:num_actual_tokens]
# and value[:num_actual_tokens] because the reshape_and_cache_flash
# op uses the slot_mapping's shape to determine the number of
# actual tokens.
torch.ops._C_cache_ops.reshape_and_cache_flash(
key,
value,
kv_cache[:, 0],
kv_cache[:, 1],
attn_metadata.slot_mapping,
self.kv_cache_dtype,
layer._k_scale,
layer._v_scale,
)
window_left = (self.sliding_window[0]
if self.sliding_window is not None else -1)
# Inputs and outputs may be padded for CUDA graphs
query = query[:num_actual_tokens]
output_padded = output
output = output[:num_actual_tokens]
if attn_metadata.use_cascade:
# Cascade attention (rare case).
assert attn_metadata.cascade_wrapper is not None
output.copy_(attn_metadata.cascade_wrapper.run(query, kv_cache))
return output
num_decode_tokens = attn_metadata.num_decode_tokens
num_prefill_tokens = attn_metadata.num_prefill_tokens
stride_order = FlashInferBackend.get_kv_cache_stride_order()
# Regular attention (common case).
# Decodes are at the front and prefills are at the back,
# according to reorder_batch()
if prefill_wrapper := attn_metadata.prefill_wrapper:
prefill_query = query[num_decode_tokens:]
assert prefill_query.shape[0] == num_prefill_tokens
assert prefill_wrapper is not None
assert prefill_wrapper._causal
assert prefill_wrapper._window_left == window_left
assert prefill_wrapper._logits_soft_cap == (self.logits_soft_cap
or 0.0)
assert prefill_wrapper._sm_scale == self.scale
prefill_wrapper.run(
prefill_query,
kv_cache.permute(*stride_order),
k_scale=layer._k_scale_float,
v_scale=layer._v_scale_float,
out=output[num_decode_tokens:],
)
if decode_wrapper := attn_metadata.decode_wrapper:
decode_query = query[:num_decode_tokens]
assert decode_query.shape[0] == num_decode_tokens
assert decode_wrapper is not None
assert decode_wrapper._window_left == window_left
assert decode_wrapper._logits_soft_cap == (self.logits_soft_cap
or 0.0)
assert decode_wrapper._sm_scale == self.scale
decode_wrapper.run(
decode_query,
kv_cache.permute(*stride_order),
k_scale=layer._k_scale_float,
v_scale=layer._v_scale_float,
out=output[:num_decode_tokens],
)
return output_padded