Files
vllm-dev/vllm/entrypoints/openai/protocol.py
2024-09-04 13:18:13 -07:00

881 lines
30 KiB
Python

# Adapted from
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
import time
from argparse import Namespace
from typing import Any, Dict, List, Literal, Optional, Union
import torch
from openai.types.chat import ChatCompletionContentPartParam
from pydantic import BaseModel, ConfigDict, Field, model_validator
from typing_extensions import Annotated, Required, TypedDict
from vllm.entrypoints.chat_utils import ChatCompletionMessageParam
from vllm.entrypoints.openai.logits_processors import get_logits_processors
from vllm.pooling_params import PoolingParams
from vllm.sampling_params import LogitsProcessor, SamplingParams
from vllm.sequence import Logprob
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.utils import random_uuid
# torch is mocked during docs generation,
# so we have to provide the values as literals
_MOCK_LONG_INFO = Namespace(min=-9223372036854775808, max=9223372036854775807)
_LONG_INFO: Union["torch.iinfo", Namespace]
try:
from sphinx.ext.autodoc.mock import _MockModule
if isinstance(torch, _MockModule):
_LONG_INFO = _MOCK_LONG_INFO
else:
_LONG_INFO = torch.iinfo(torch.long)
except ModuleNotFoundError:
_LONG_INFO = torch.iinfo(torch.long)
assert _LONG_INFO.min == _MOCK_LONG_INFO.min
assert _LONG_INFO.max == _MOCK_LONG_INFO.max
class CustomChatCompletionMessageParam(TypedDict, total=False):
"""Enables custom roles in the Chat Completion API."""
role: Required[str]
"""The role of the message's author."""
content: Union[str, List[ChatCompletionContentPartParam]]
"""The contents of the message."""
name: str
"""An optional name for the participant.
Provides the model information to differentiate between participants of the
same role.
"""
tool_call_id: Optional[str]
tool_calls: Optional[List[dict]]
class OpenAIBaseModel(BaseModel):
# OpenAI API does not allow extra fields
model_config = ConfigDict(extra="forbid")
class ErrorResponse(OpenAIBaseModel):
object: str = "error"
message: str
type: str
param: Optional[str] = None
code: int
class ModelPermission(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
object: str = "model_permission"
created: int = Field(default_factory=lambda: int(time.time()))
allow_create_engine: bool = False
allow_sampling: bool = True
allow_logprobs: bool = True
allow_search_indices: bool = False
allow_view: bool = True
allow_fine_tuning: bool = False
organization: str = "*"
group: Optional[str] = None
is_blocking: bool = False
class ModelCard(OpenAIBaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "vllm"
root: Optional[str] = None
parent: Optional[str] = None
max_model_len: Optional[int] = None
permission: List[ModelPermission] = Field(default_factory=list)
class ModelList(OpenAIBaseModel):
object: str = "list"
data: List[ModelCard] = Field(default_factory=list)
class UsageInfo(OpenAIBaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class JsonSchemaResponseFormat(OpenAIBaseModel):
name: str
description: Optional[str] = None
# schema is the field in openai but that causes conflicts with pydantic so
# instead use json_schema with an alias
json_schema: Optional[Dict[str, Any]] = Field(default=None, alias='schema')
strict: Optional[bool] = None
class ResponseFormat(OpenAIBaseModel):
# type must be "json_schema", "json_object" or "text"
type: Literal["text", "json_object", "json_schema"]
json_schema: Optional[JsonSchemaResponseFormat] = None
class StreamOptions(OpenAIBaseModel):
include_usage: Optional[bool] = True
continuous_usage_stats: Optional[bool] = True
class FunctionDefinition(OpenAIBaseModel):
name: str
description: Optional[str] = None
parameters: Optional[Dict[str, Any]] = None
class ChatCompletionToolsParam(OpenAIBaseModel):
type: Literal["function"] = "function"
function: FunctionDefinition
class ChatCompletionNamedFunction(OpenAIBaseModel):
name: str
class ChatCompletionNamedToolChoiceParam(OpenAIBaseModel):
function: ChatCompletionNamedFunction
type: Literal["function"] = "function"
class ChatCompletionRequest(OpenAIBaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/chat/create
messages: List[ChatCompletionMessageParam]
model: str
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = 0
max_tokens: Optional[int] = None
n: Optional[int] = 1
presence_penalty: Optional[float] = 0.0
response_format: Optional[ResponseFormat] = None
seed: Optional[int] = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
tools: Optional[List[ChatCompletionToolsParam]] = None
tool_choice: Optional[Union[Literal["none"], Literal["auto"],
ChatCompletionNamedToolChoiceParam]] = "none"
# NOTE this will be ignored by VLLM -- the model determines the behavior
parallel_tool_calls: Optional[bool] = False
user: Optional[str] = None
# doc: begin-chat-completion-sampling-params
best_of: Optional[int] = None
use_beam_search: bool = False
top_k: int = -1
min_p: float = 0.0
repetition_penalty: float = 1.0
length_penalty: float = 1.0
early_stopping: bool = False
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
include_stop_str_in_output: bool = False
ignore_eos: bool = False
min_tokens: int = 0
skip_special_tokens: bool = True
spaces_between_special_tokens: bool = True
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
prompt_logprobs: Optional[int] = None
# doc: end-chat-completion-sampling-params
# doc: begin-chat-completion-extra-params
echo: bool = Field(
default=False,
description=(
"If true, the new message will be prepended with the last message "
"if they belong to the same role."),
)
add_generation_prompt: bool = Field(
default=True,
description=
("If true, the generation prompt will be added to the chat template. "
"This is a parameter used by chat template in tokenizer config of the "
"model."),
)
add_special_tokens: bool = Field(
default=False,
description=(
"If true, special tokens (e.g. BOS) will be added to the prompt "
"on top of what is added by the chat template. "
"For most models, the chat template takes care of adding the "
"special tokens so this should be set to false (as is the "
"default)."),
)
documents: Optional[List[Dict[str, str]]] = Field(
default=None,
description=
("A list of dicts representing documents that will be accessible to "
"the model if it is performing RAG (retrieval-augmented generation)."
" If the template does not support RAG, this argument will have no "
"effect. We recommend that each document should be a dict containing "
"\"title\" and \"text\" keys."),
)
chat_template: Optional[str] = Field(
default=None,
description=(
"A Jinja template to use for this conversion. "
"As of transformers v4.44, default chat template is no longer "
"allowed, so you must provide a chat template if the tokenizer "
"does not define one."),
)
chat_template_kwargs: Optional[Dict[str, Any]] = Field(
default=None,
description=("Additional kwargs to pass to the template renderer. "
"Will be accessible by the chat template."),
)
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
default=None,
description=("If specified, the output will follow the JSON schema."),
)
guided_regex: Optional[str] = Field(
default=None,
description=(
"If specified, the output will follow the regex pattern."),
)
guided_choice: Optional[List[str]] = Field(
default=None,
description=(
"If specified, the output will be exactly one of the choices."),
)
guided_grammar: Optional[str] = Field(
default=None,
description=(
"If specified, the output will follow the context free grammar."),
)
guided_decoding_backend: Optional[str] = Field(
default=None,
description=(
"If specified, will override the default guided decoding backend "
"of the server for this specific request. If set, must be either "
"'outlines' / 'lm-format-enforcer'"))
guided_whitespace_pattern: Optional[str] = Field(
default=None,
description=(
"If specified, will override the default whitespace pattern "
"for guided json decoding."))
# doc: end-chat-completion-extra-params
def to_sampling_params(
self, tokenizer: AnyTokenizer,
guided_decode_logits_processor: Optional[LogitsProcessor],
default_max_tokens: int) -> SamplingParams:
max_tokens = self.max_tokens
if max_tokens is None:
max_tokens = default_max_tokens
prompt_logprobs = self.prompt_logprobs
if prompt_logprobs is None and self.echo:
prompt_logprobs = self.top_logprobs
# We now allow logprobs being true without top_logrobs.
logits_processors = get_logits_processors(
logit_bias=self.logit_bias,
allowed_token_ids=None,
tokenizer=tokenizer,
)
if guided_decode_logits_processor:
logits_processors.append(guided_decode_logits_processor)
return SamplingParams.from_optional(
n=self.n,
best_of=self.best_of,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
repetition_penalty=self.repetition_penalty,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
min_p=self.min_p,
seed=self.seed,
stop=self.stop,
stop_token_ids=self.stop_token_ids,
logprobs=self.top_logprobs if self.logprobs else None,
prompt_logprobs=prompt_logprobs,
ignore_eos=self.ignore_eos,
max_tokens=max_tokens,
min_tokens=self.min_tokens,
use_beam_search=self.use_beam_search,
early_stopping=self.early_stopping,
skip_special_tokens=self.skip_special_tokens,
spaces_between_special_tokens=self.spaces_between_special_tokens,
include_stop_str_in_output=self.include_stop_str_in_output,
length_penalty=self.length_penalty,
logits_processors=logits_processors,
truncate_prompt_tokens=self.truncate_prompt_tokens,
)
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
if data.get("stream_options") and not data.get("stream"):
raise ValueError(
"Stream options can only be defined when `stream=True`.")
return data
@model_validator(mode="before")
@classmethod
def check_logprobs(cls, data):
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
if data.get("stream") and prompt_logprobs > 0:
raise ValueError(
"`prompt_logprobs` are not available when `stream=True`.")
if prompt_logprobs < 0:
raise ValueError("`prompt_logprobs` must be a positive value.")
if (top_logprobs := data.get("top_logprobs")) is not None:
if top_logprobs < 0:
raise ValueError("`top_logprobs` must be a positive value.")
if not data.get("logprobs"):
raise ValueError(
"when using `top_logprobs`, `logprobs` must be set to true."
)
return data
@model_validator(mode="before")
@classmethod
def check_guided_decoding_count(cls, data):
if isinstance(data, ValueError):
raise data
guide_count = sum([
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None
])
# you can only use one kind of guided decoding
if guide_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex' or 'guided_choice').")
# you can only either use guided decoding or tools, not both
if guide_count > 1 and data.get("tool_choice",
"none") not in ("none", "auto"):
raise ValueError(
"You can only either use guided decoding or tools, not both.")
return data
@model_validator(mode="before")
@classmethod
def check_tool_usage(cls, data):
# if "tool_choice" is not specified but tools are provided,
# default to "auto" tool_choice
if "tool_choice" not in data and "tools" in data:
data["tool_choice"] = "auto"
# if "tool_choice" is specified -- validation
if "tool_choice" in data:
# ensure that if "tool choice" is specified, tools are present
if "tools" not in data or data["tools"] is None:
raise ValueError(
"When using `tool_choice`, `tools` must be set.")
# make sure that tool choice is either a named tool
# OR that it's set to "auto"
if data["tool_choice"] != "auto" and not isinstance(
data["tool_choice"], dict):
raise ValueError(
"`tool_choice` must either be a named tool or \"auto\". "
"`tool_choice=\"none\" is not supported.")
# ensure that if "tool_choice" is specified as an object,
# it matches a valid tool
if isinstance(data["tool_choice"], dict):
valid_tool = False
specified_function = data["tool_choice"]["function"]
if not specified_function:
raise ValueError(
"Incorrectly formatted `tool_choice`. Should be like "
"`{\"type\": \"function\","
" \"function\": {\"name\": \"my_function\"}}`")
specified_function_name = specified_function["name"]
if not specified_function_name:
raise ValueError(
"Incorrectly formatted `tool_choice`. Should be like "
"`{\"type\": \"function\", "
"\"function\": {\"name\": \"my_function\"}}`")
for tool in data["tools"]:
if tool["function"]["name"] == specified_function_name:
valid_tool = True
break
if not valid_tool:
raise ValueError(
"The tool specified in `tool_choice` does not match any"
" of the specified `tools`")
return data
class CompletionRequest(OpenAIBaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/completions/create
model: str
prompt: Union[List[int], List[List[int]], str, List[str]]
best_of: Optional[int] = None
echo: Optional[bool] = False
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
logprobs: Optional[int] = None
max_tokens: Optional[int] = 16
n: int = 1
presence_penalty: Optional[float] = 0.0
seed: Optional[int] = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
suffix: Optional[str] = None
temperature: Optional[float] = 1.0
top_p: Optional[float] = 1.0
user: Optional[str] = None
# doc: begin-completion-sampling-params
use_beam_search: bool = False
top_k: int = -1
min_p: float = 0.0
repetition_penalty: float = 1.0
length_penalty: float = 1.0
early_stopping: bool = False
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
include_stop_str_in_output: bool = False
ignore_eos: bool = False
min_tokens: int = 0
skip_special_tokens: bool = True
spaces_between_special_tokens: bool = True
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
allowed_token_ids: Optional[List[int]] = None
prompt_logprobs: Optional[int] = None
# doc: end-completion-sampling-params
# doc: begin-completion-extra-params
add_special_tokens: bool = Field(
default=True,
description=(
"If true (the default), special tokens (e.g. BOS) will be added to "
"the prompt."),
)
response_format: Optional[ResponseFormat] = Field(
default=None,
description=
("Similar to chat completion, this parameter specifies the format of "
"output. Only {'type': 'json_object'} or {'type': 'text' } is "
"supported."),
)
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
default=None,
description="If specified, the output will follow the JSON schema.",
)
guided_regex: Optional[str] = Field(
default=None,
description=(
"If specified, the output will follow the regex pattern."),
)
guided_choice: Optional[List[str]] = Field(
default=None,
description=(
"If specified, the output will be exactly one of the choices."),
)
guided_grammar: Optional[str] = Field(
default=None,
description=(
"If specified, the output will follow the context free grammar."),
)
guided_decoding_backend: Optional[str] = Field(
default=None,
description=(
"If specified, will override the default guided decoding backend "
"of the server for this specific request. If set, must be one of "
"'outlines' / 'lm-format-enforcer'"))
guided_whitespace_pattern: Optional[str] = Field(
default=None,
description=(
"If specified, will override the default whitespace pattern "
"for guided json decoding."))
# doc: end-completion-extra-params
def to_sampling_params(
self, tokenizer: AnyTokenizer,
guided_decode_logits_processor: Optional[LogitsProcessor],
default_max_tokens: int) -> SamplingParams:
max_tokens = self.max_tokens
if max_tokens is None:
max_tokens = default_max_tokens
prompt_logprobs = self.prompt_logprobs
if prompt_logprobs is None and self.echo:
prompt_logprobs = self.logprobs
echo_without_generation = self.echo and self.max_tokens == 0
logits_processors = get_logits_processors(
logit_bias=self.logit_bias,
allowed_token_ids=self.allowed_token_ids,
tokenizer=tokenizer,
)
if guided_decode_logits_processor:
logits_processors.append(guided_decode_logits_processor)
return SamplingParams.from_optional(
n=self.n,
best_of=self.best_of,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
repetition_penalty=self.repetition_penalty,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
min_p=self.min_p,
seed=self.seed,
stop=self.stop,
stop_token_ids=self.stop_token_ids,
logprobs=self.logprobs,
ignore_eos=self.ignore_eos,
max_tokens=max_tokens if not echo_without_generation else 1,
min_tokens=self.min_tokens,
use_beam_search=self.use_beam_search,
early_stopping=self.early_stopping,
prompt_logprobs=prompt_logprobs,
skip_special_tokens=self.skip_special_tokens,
spaces_between_special_tokens=self.spaces_between_special_tokens,
include_stop_str_in_output=self.include_stop_str_in_output,
length_penalty=self.length_penalty,
logits_processors=logits_processors,
truncate_prompt_tokens=self.truncate_prompt_tokens,
)
@model_validator(mode="before")
@classmethod
def check_guided_decoding_count(cls, data):
guide_count = sum([
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None
])
if guide_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex' or 'guided_choice').")
return data
@model_validator(mode="before")
@classmethod
def check_logprobs(cls, data):
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
if data.get("stream") and prompt_logprobs > 0:
raise ValueError(
"`prompt_logprobs` are not available when `stream=True`.")
if prompt_logprobs < 0:
raise ValueError("`prompt_logprobs` must be a positive value.")
if (logprobs := data.get("logprobs")) is not None and logprobs < 0:
raise ValueError("`logprobs` must be a positive value.")
return data
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
if data.get("stream_options") and not data.get("stream"):
raise ValueError(
"Stream options can only be defined when `stream=True`.")
return data
class EmbeddingRequest(OpenAIBaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/embeddings
model: str
input: Union[List[int], List[List[int]], str, List[str]]
encoding_format: Literal["float", "base64"] = "float"
dimensions: Optional[int] = None
user: Optional[str] = None
# doc: begin-embedding-pooling-params
additional_data: Optional[Any] = None
# doc: end-embedding-pooling-params
def to_pooling_params(self):
return PoolingParams(additional_data=self.additional_data)
class CompletionLogProbs(OpenAIBaseModel):
text_offset: List[int] = Field(default_factory=list)
token_logprobs: List[Optional[float]] = Field(default_factory=list)
tokens: List[str] = Field(default_factory=list)
top_logprobs: List[Optional[Dict[str,
float]]] = Field(default_factory=list)
class CompletionResponseChoice(OpenAIBaseModel):
index: int
text: str
logprobs: Optional[CompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = Field(
default=None,
description=(
"The stop string or token id that caused the completion "
"to stop, None if the completion finished for some other reason "
"including encountering the EOS token"),
)
prompt_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None
class CompletionResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseChoice]
usage: UsageInfo
class CompletionResponseStreamChoice(OpenAIBaseModel):
index: int
text: str
logprobs: Optional[CompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = Field(
default=None,
description=(
"The stop string or token id that caused the completion "
"to stop, None if the completion finished for some other reason "
"including encountering the EOS token"),
)
class CompletionStreamResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(default=None)
class EmbeddingResponseData(OpenAIBaseModel):
index: int
object: str = "embedding"
embedding: Union[List[float], str]
class EmbeddingResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
object: str = "list"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
data: List[EmbeddingResponseData]
usage: UsageInfo
class FunctionCall(OpenAIBaseModel):
name: str
arguments: str
class ToolCall(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-tool-{random_uuid()}")
type: Literal["function"] = "function"
function: FunctionCall
class DeltaFunctionCall(BaseModel):
name: Optional[str] = None
arguments: Optional[str] = None
# a tool call delta where everything is optional
class DeltaToolCall(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-tool-{random_uuid()}")
type: Literal["function"] = "function"
index: int
function: Optional[DeltaFunctionCall] = None
# the initial delta that gets sent once a new tool call is started;
class InitialDeltaToolCall(DeltaToolCall):
id: str = Field(default_factory=lambda: f"chatcmpl-tool-{random_uuid()}")
type: Literal["function"] = "function"
index: int
class ExtractedToolCallInformation(BaseModel):
# indicate if tools were called
tools_called: bool
# extracted tool calls
tool_calls: List[ToolCall]
# content - per OpenAI spec, content AND tool calls can be returned rarely
# But some models will do this intentionally
content: Optional[str] = None
class ChatMessage(OpenAIBaseModel):
role: str
content: Optional[str] = None
tool_calls: List[ToolCall] = Field(default_factory=list)
class ChatCompletionLogProb(OpenAIBaseModel):
token: str
logprob: float = -9999.0
bytes: Optional[List[int]] = None
class ChatCompletionLogProbsContent(ChatCompletionLogProb):
top_logprobs: List[ChatCompletionLogProb] = Field(default_factory=list)
class ChatCompletionLogProbs(OpenAIBaseModel):
content: Optional[List[ChatCompletionLogProbsContent]] = None
class ChatCompletionResponseChoice(OpenAIBaseModel):
index: int
message: ChatMessage
logprobs: Optional[ChatCompletionLogProbs] = None
# per OpenAI spec this is the default
finish_reason: Optional[str] = "stop"
# not part of the OpenAI spec but included in vLLM for legacy reasons
stop_reason: Optional[Union[int, str]] = None
class ChatCompletionResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
object: Literal["chat.completion"] = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: UsageInfo
prompt_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None
class DeltaMessage(OpenAIBaseModel):
role: Optional[str] = None
content: Optional[str] = None
tool_calls: List[DeltaToolCall] = Field(default_factory=list)
class ChatCompletionResponseStreamChoice(OpenAIBaseModel):
index: int
delta: DeltaMessage
logprobs: Optional[ChatCompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = None
class ChatCompletionStreamResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(default=None)
class BatchRequestInput(OpenAIBaseModel):
"""
The per-line object of the batch input file.
NOTE: Currently only the `/v1/chat/completions` endpoint is supported.
"""
# A developer-provided per-request id that will be used to match outputs to
# inputs. Must be unique for each request in a batch.
custom_id: str
# The HTTP method to be used for the request. Currently only POST is
# supported.
method: str
# The OpenAI API relative URL to be used for the request. Currently
# /v1/chat/completions is supported.
url: str
# The parameters of the request.
body: Union[ChatCompletionRequest, EmbeddingRequest]
class BatchResponseData(OpenAIBaseModel):
# HTTP status code of the response.
status_code: int = 200
# An unique identifier for the API request.
request_id: str
# The body of the response.
body: Optional[Union[ChatCompletionResponse, EmbeddingResponse]] = None
class BatchRequestOutput(OpenAIBaseModel):
"""
The per-line object of the batch output and error files
"""
id: str
# A developer-provided per-request id that will be used to match outputs to
# inputs.
custom_id: str
response: Optional[BatchResponseData]
# For requests that failed with a non-HTTP error, this will contain more
# information on the cause of the failure.
error: Optional[Any]
class TokenizeCompletionRequest(OpenAIBaseModel):
model: str
prompt: str
add_special_tokens: bool = Field(default=True)
class TokenizeChatRequest(OpenAIBaseModel):
model: str
messages: List[ChatCompletionMessageParam]
add_generation_prompt: bool = Field(default=True)
add_special_tokens: bool = Field(default=False)
TokenizeRequest = Union[TokenizeCompletionRequest, TokenizeChatRequest]
class TokenizeResponse(OpenAIBaseModel):
count: int
max_model_len: int
tokens: List[int]
class DetokenizeRequest(OpenAIBaseModel):
model: str
tokens: List[int]
class DetokenizeResponse(OpenAIBaseModel):
prompt: str