485 lines
19 KiB
Python
485 lines
19 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only deci model compatible with HuggingFace weights."""
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
from typing import Any, Optional, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import LlamaConfig
|
|
|
|
from vllm.attention import AttentionType
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import get_pp_group
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader, maybe_remap_kv_scale_name)
|
|
from vllm.model_executor.models.llama import LlamaAttention, LlamaMLP
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import HasNoOps, SupportsLoRA, SupportsPP
|
|
from .utils import (AutoWeightsLoader, PPMissingLayer, is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory, make_layers,
|
|
maybe_prefix)
|
|
|
|
|
|
def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
|
|
# DeciLM-specific code
|
|
intermediate_size = int(2 * ffn_mult * n_embd / 3)
|
|
return _find_multiple(intermediate_size, 256)
|
|
|
|
|
|
def _find_multiple(n: int, k: int) -> int:
|
|
# DeciLM-specific code
|
|
if n % k == 0:
|
|
return n
|
|
return n + k - (n % k)
|
|
|
|
|
|
class DeciLMAttention(LlamaAttention):
|
|
|
|
def __init__(
|
|
self,
|
|
config: LlamaConfig,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: Optional[dict[str, Any]] = None,
|
|
max_position_embeddings: int = 8192,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
bias: bool = False,
|
|
bias_o_proj: bool = False,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
prefix: str = "",
|
|
attn_type: str = AttentionType.DECODER,
|
|
) -> None:
|
|
super().__init__(config, hidden_size, num_heads, num_kv_heads,
|
|
rope_theta, rope_scaling, max_position_embeddings,
|
|
quant_config, bias, bias_o_proj, cache_config, prefix,
|
|
attn_type)
|
|
|
|
def _init_rotary_emb(self, config, rope_scaling: Optional[dict[str, Any]],
|
|
quant_config: Optional[QuantizationConfig]) -> None:
|
|
# Enables YARN for Mistral and LLaMA4 derivatives.
|
|
is_neox_style = True
|
|
if hasattr(config, "position_embedding_type"):
|
|
is_neox_style = config.position_embedding_type not in [
|
|
"mistral_yarn", "rope_llama4"
|
|
]
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=self.max_position_embeddings,
|
|
base=self.rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
is_neox_style=is_neox_style,
|
|
partial_rotary_factor=self.partial_rotary_factor)
|
|
|
|
|
|
class DeciLMDecoderLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: LlamaConfig,
|
|
layer_idx: int,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
block_config = config.block_configs[layer_idx]
|
|
self._is_no_op_attention = block_config.attention.no_op
|
|
self._is_no_op_ffn = block_config.ffn.no_op
|
|
|
|
self.hidden_size = config.hidden_size
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
if rope_scaling is not None and getattr(
|
|
config, "original_max_position_embeddings", None):
|
|
rope_scaling["original_max_position_embeddings"] = (
|
|
config.original_max_position_embeddings)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings",
|
|
8192)
|
|
# Support abacusai/Smaug-72B-v0.1 with attention_bias
|
|
# Support internlm/internlm-7b with bias
|
|
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
|
config, "bias", False)
|
|
bias_o_proj = attention_bias
|
|
# support internlm/internlm3-8b with qkv_bias
|
|
if hasattr(config, "qkv_bias"):
|
|
attention_bias = config.qkv_bias
|
|
|
|
if not self._is_no_op_attention:
|
|
num_kv_heads = (config.num_attention_heads //
|
|
block_config.attention.n_heads_in_group)
|
|
self.self_attn = DeciLMAttention(
|
|
config=config,
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=num_kv_heads,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
max_position_embeddings=max_position_embeddings,
|
|
quant_config=quant_config,
|
|
bias=attention_bias,
|
|
bias_o_proj=bias_o_proj,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
self.input_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
|
|
if not self._is_no_op_ffn:
|
|
ffn_mult = block_config.ffn.ffn_mult
|
|
intermediate_size = _ffn_mult_to_intermediate_size(
|
|
ffn_mult, config.hidden_size)
|
|
|
|
self.mlp = LlamaMLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
bias=getattr(config, "mlp_bias", False),
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: Optional[torch.Tensor],
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
|
|
if self._is_no_op_attention:
|
|
pass
|
|
else:
|
|
if (residual is None):
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(
|
|
hidden_states, residual)
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
|
|
# Fully Connected
|
|
if not self._is_no_op_ffn:
|
|
hidden_states, residual = self.post_attention_layernorm(
|
|
hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile
|
|
class DeciModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
layer_type: type[DeciLMDecoderLayer] = DeciLMDecoderLayer,
|
|
):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.padding_idx = config.pad_token_id
|
|
lora_vocab = ((lora_config.lora_extra_vocab_size *
|
|
(lora_config.max_loras or 1)) if lora_config else 0)
|
|
self.vocab_size = config.vocab_size + lora_vocab
|
|
self.org_vocab_size = config.vocab_size
|
|
if get_pp_group().is_first_rank or (config.tie_word_embeddings
|
|
and get_pp_group().is_last_rank):
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size,
|
|
config.hidden_size,
|
|
org_num_embeddings=config.vocab_size,
|
|
quant_config=quant_config,
|
|
)
|
|
else:
|
|
self.embed_tokens = PPMissingLayer()
|
|
|
|
def get_layer(prefix: str):
|
|
layer_idx = int(prefix.rsplit(".", 1)[1])
|
|
return layer_type(
|
|
config,
|
|
layer_idx,
|
|
cache_config,
|
|
quant_config=quant_config,
|
|
prefix=prefix,
|
|
)
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
get_layer,
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
if get_pp_group().is_last_rank:
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
else:
|
|
self.norm = PPMissingLayer()
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size))
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor],
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors],
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
kv_cache_index = 0
|
|
for layer in islice(self.layers, self.start_layer, self.end_layer):
|
|
if not layer._is_no_op_attention:
|
|
hidden_states, residual = layer(positions, hidden_states,
|
|
residual)
|
|
kv_cache_index += 1
|
|
else:
|
|
hidden_states, residual = layer(positions, hidden_states,
|
|
residual)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({
|
|
"hidden_states": hidden_states,
|
|
"residual": residual
|
|
})
|
|
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
(".gate_up_proj", ".gate_proj", 0),
|
|
(".gate_up_proj", ".up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
if ("rotary_emb.cos_cached" in name
|
|
or "rotary_emb.sin_cached" in name):
|
|
# Models trained using ColossalAI may include these tensors in
|
|
# the checkpoint. Skip them.
|
|
continue
|
|
if self.quant_config is not None and (
|
|
scale_name := self.quant_config.get_cache_scale(name)):
|
|
# Loading kv cache quantization scales
|
|
param = params_dict[scale_name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
|
|
loaded_weight[0])
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(scale_name)
|
|
continue
|
|
if "scale" in name:
|
|
# Remapping the name of FP8 kv-scale.
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class DeciLMForCausalLM(nn.Module, SupportsLoRA, SupportsPP, HasNoOps):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"],
|
|
}
|
|
|
|
# LoRA specific attributes
|
|
embedding_modules = {
|
|
"embed_tokens": "input_embeddings",
|
|
"lm_head": "output_embeddings",
|
|
}
|
|
embedding_padding_modules = ["lm_head"]
|
|
|
|
# Mistral/Llama models can also be loaded with --load-format mistral
|
|
# from consolidated.safetensors checkpoints
|
|
mistral_mapping = {
|
|
"layers": "model.layers",
|
|
"attention": "self_attn",
|
|
"wq": "q_proj",
|
|
"wk": "k_proj",
|
|
"wv": "v_proj",
|
|
"wo": "o_proj",
|
|
"attention_norm": "input_layernorm",
|
|
"feed_forward": "mlp",
|
|
"w1": "gate_proj",
|
|
"w2": "down_proj",
|
|
"w3": "up_proj",
|
|
"ffn_norm": "post_attention_layernorm",
|
|
"tok_embeddings": "model.embed_tokens",
|
|
"output": "lm_head",
|
|
"norm": "model.norm",
|
|
}
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
self.config = config
|
|
self.lora_config = lora_config
|
|
|
|
self.model = self._init_model(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "model"))
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.unpadded_vocab_size = config.vocab_size
|
|
if lora_config:
|
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
|
self.lm_head = ParallelLMHead(
|
|
self.unpadded_vocab_size,
|
|
config.hidden_size,
|
|
org_num_embeddings=config.vocab_size,
|
|
padding_size=(
|
|
DEFAULT_VOCAB_PADDING_SIZE
|
|
# We need bigger padding if using lora for kernel
|
|
# compatibility
|
|
if not lora_config else
|
|
lora_config.lora_vocab_padding_size),
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
if config.tie_word_embeddings:
|
|
self.lm_head = self.lm_head.tie_weights(
|
|
self.model.embed_tokens)
|
|
|
|
logit_scale = getattr(config, "logit_scale", 1.0)
|
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
|
config.vocab_size,
|
|
logit_scale)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors)
|
|
|
|
def _init_model(self, vllm_config: VllmConfig, prefix: str = ""):
|
|
return DeciModel(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
model_output = self.model(input_ids, positions, intermediate_tensors,
|
|
inputs_embeds)
|
|
return model_output
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."]
|
|
if self.config.tie_word_embeddings else None),
|
|
)
|
|
return loader.load_weights(weights)
|