Files
vllm-dev/vllm/model_executor/models/nemotron_h.py
2025-08-29 09:26:34 +08:00

632 lines
23 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from https://github.com/vllm-project/vllm/blob/94d8ec8d2bcb4ec55e33022b313c7e978edf05e1/vllm/model_executor/models/bamba.py
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only NemotronH model."""
from collections.abc import Iterable
from typing import Optional
import torch
from torch import nn
from vllm import envs
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.activation import ReLUSquaredActivation
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba2_metadata import (
Mamba2Metadata, prepare_mamba2_metadata)
from vllm.model_executor.layers.mamba.mamba_mixer2 import MambaMixer2
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator, MambaStateShapeCalculator)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.interfaces import (HasInnerState, IsHybrid,
SupportsLoRA, SupportsPP,
SupportsQuant)
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
MambaCacheParams)
from vllm.model_executor.models.utils import (
AutoWeightsLoader, make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs import NemotronHConfig
from vllm.utils import LayerBlockType
class NemotronHMLP(nn.Module):
def __init__(
self,
config: NemotronHConfig,
layer_idx: int,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
prefix: str = "",
) -> None:
super().__init__()
hybrid_override_pattern = config.hybrid_override_pattern
mlp_index = hybrid_override_pattern[:layer_idx + 1].count("-") - 1
if isinstance(config.intermediate_size, list):
if len(config.intermediate_size) == 1:
intermediate_size = config.intermediate_size[0]
else:
intermediate_size = config.intermediate_size[mlp_index]
else:
intermediate_size = config.intermediate_size
self.up_proj = ColumnParallelLinear(
input_size=config.hidden_size,
output_size=intermediate_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.up_proj",
)
self.down_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=config.hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
self.act_fn = ReLUSquaredActivation()
def forward(self, x: torch.Tensor):
x, _ = self.up_proj(x)
x = self.act_fn(x)
x, _ = self.down_proj(x)
return x
class NemotronHMLPDecoderLayer(nn.Module):
def __init__(
self,
config: NemotronHConfig,
layer_idx: int,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.mixer = NemotronHMLP(
config,
quant_config=quant_config,
bias=config.mlp_bias,
prefix=f"{prefix}.mixer",
layer_idx=layer_idx,
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.norm(hidden_states)
else:
hidden_states, residual = self.norm(hidden_states, residual)
hidden_states = self.mixer(hidden_states)
return hidden_states, residual
class NemotronHMambaDecoderLayer(nn.Module):
def __init__(
self,
config: NemotronHConfig,
layer_idx: int,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.mixer = MambaMixer2(
hidden_size=config.hidden_size,
ssm_state_size=config.ssm_state_size,
conv_kernel_size=config.conv_kernel,
intermediate_size=config.mamba_num_heads * config.mamba_head_dim,
use_conv_bias=config.use_conv_bias,
use_bias=config.use_bias,
n_groups=config.n_groups,
num_heads=config.mamba_num_heads,
head_dim=config.mamba_head_dim,
rms_norm_eps=config.rms_norm_eps,
activation=config.mamba_hidden_act,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.mixer",
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
mamba_cache_params: MambaCacheParams,
mamba2_metadata: Mamba2Metadata,
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.norm(hidden_states)
else:
hidden_states, residual = self.norm(hidden_states, residual)
output = torch.empty_like(hidden_states)
self.mixer(hidden_states, output, mamba_cache_params, mamba2_metadata)
return output, residual
class NemotronHAttention(nn.Module):
def __init__(
self,
config: NemotronHConfig,
layer_idx: int,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
if hasattr(config, "head_dim") and config.head_dim is not None:
self.head_dim = config.head_dim
else:
self.head_dim = config.hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
config.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
hidden_states: torch.Tensor,
**kwargs,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class NemotronHAttentionDecoderLayer(nn.Module):
def __init__(
self,
config: NemotronHConfig,
layer_idx: int,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.mixer = NemotronHAttention(
config,
layer_idx,
model_config,
cache_config,
quant_config,
prefix=f"{prefix}.mixer",
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.norm(hidden_states)
else:
hidden_states, residual = self.norm(hidden_states, residual)
hidden_states = self.mixer(hidden_states=hidden_states)
return hidden_states, residual
ALL_DECODER_LAYER_TYPES = {
"M": NemotronHMambaDecoderLayer,
"-": NemotronHMLPDecoderLayer,
"*": NemotronHAttentionDecoderLayer,
}
@support_torch_compile
class NemotronHModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: NemotronHConfig = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
lora_vocab = ((lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0)
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
def get_layer(prefix: str):
layer_idx = int(prefix.rsplit(".", 1)[1])
layer_class = ALL_DECODER_LAYER_TYPES[
config.hybrid_override_pattern[layer_idx]]
return layer_class(
config,
layer_idx,
model_config,
cache_config,
quant_config=quant_config,
prefix=prefix,
)
self.start_layer, self.end_layer, self.layers = make_layers(
len(config.hybrid_override_pattern),
get_layer,
prefix=f"{prefix}.layers")
self.make_empty_intmd_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size)
self.norm_f = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
mamba_cache_params: MambaCacheParams,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
attn_metadata = get_forward_context().attn_metadata
if not envs.VLLM_USE_V1:
mamba2_metadata = prepare_mamba2_metadata(
chunk_size=self.config.chunk_size,
attn_metadata=attn_metadata,
)
else:
# v1 get mamba2_metadata from forward_context
mamba2_metadata = None
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
residual = None
num_non_mamba_layers = 0
for i, layer in enumerate(self.layers):
layer_mamba_cache_params = None
if isinstance(layer,
NemotronHMambaDecoderLayer) and mamba_cache_params:
layer_mamba_cache_params = mamba_cache_params.at_layer_idx(
i - num_non_mamba_layers)
else:
num_non_mamba_layers += 1
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
residual=residual,
mamba_cache_params=layer_mamba_cache_params,
mamba2_metadata=mamba2_metadata,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm_f(hidden_states, residual)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
attb_params_mapping = {
"q_proj": "q",
"k_proj": "k",
"v_proj": "v",
}
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if "embeddings" in name:
name = name.replace("embeddings", "embed_tokens")
if "A_log" in name:
name = name.replace("A_log", "A")
loaded_weight = loaded_weight.to(torch.float32)
if "D" in name:
loaded_weight = loaded_weight.to(torch.float32)
if "dt_bias" in name:
loaded_weight = loaded_weight.to(torch.float32)
# load attn params
if any(proj in name for proj in ["q_proj", "k_proj", "v_proj"]):
weight_name = next(proj
for proj in ["q_proj", "k_proj", "v_proj"]
if proj in name)
name = name.replace(weight_name, "qkv_proj")
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight,
attb_params_mapping[weight_name])
# load other params
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class NemotronHForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
IsHybrid, SupportsQuant):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
}
# LoRA specific attributes
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, torch.dtype]:
return MambaStateDtypeCalculator.mamba2_state_dtype(
vllm_config.model_config.dtype,
vllm_config.cache_config.mamba_cache_dtype,
vllm_config.cache_config.mamba_ssm_cache_dtype,
)
@classmethod
def get_mamba_state_shape_from_config(
cls,
vllm_config: "VllmConfig",
use_v1: bool = True,
) -> tuple[tuple[int, int], tuple[int, int, int]]:
"""Calculate shapes for Mamba's convolutional and state caches.
Args:
vllm_config: vLLM config
use_v1: Get shapes for V1 (or V0)
Returns:
Tuple containing:
- conv_state_shape: Shape for convolutional state cache
- temporal_state_shape: Shape for state space model cache
"""
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
intermediate_size = hf_config.mamba_num_heads * hf_config.mamba_head_dim
return MambaStateShapeCalculator.mamba2_state_shape(
intermediate_size=intermediate_size,
tp_world_size=parallel_config.tensor_parallel_size,
n_groups=hf_config.n_groups,
num_heads=hf_config.mamba_num_heads,
head_dim=hf_config.mamba_head_dim,
state_size=hf_config.ssm_state_size,
conv_kernel=hf_config.conv_kernel,
use_v1=use_v1,
)
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
lora_config = vllm_config.lora_config
scheduler_config = vllm_config.scheduler_config
assert not cache_config.enable_prefix_caching, \
"NemotronH currently does not support prefix caching"
self.quant_config = vllm_config.quant_config
super().__init__()
self.config = config
self.scheduler_config = scheduler_config
self.model = NemotronHModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
)
# Used to track and store by the Mamba cache between steps.
self.mamba_cache: Optional[MambaCacheManager] = None
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size)
self.make_empty_intmd_tensors = (self.model.make_empty_intmd_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs):
mamba_cache_params = None
if not envs.VLLM_USE_V1:
if self.mamba_cache is None:
num_mamba_layers = \
self.model_config.get_num_layers_by_block_type(
self.vllm_config.parallel_config,
LayerBlockType.mamba
)
mamba_state_shape = \
self.get_mamba_state_shape_from_config(
self.vllm_config, use_v1=False)
mamba_state_dtype = \
self.get_mamba_state_dtype_from_config(
self.vllm_config)
self.mamba_cache = MambaCacheManager(self.vllm_config,
num_mamba_layers,
*mamba_state_shape,
*mamba_state_dtype)
mamba_cache_params = self.mamba_cache.current_run_tensors(**kwargs)
hidden_states = self.model(input_ids, positions, mamba_cache_params,
intermediate_tensors, inputs_embeds)
return hidden_states
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
return self.mamba_cache.copy_inputs_before_cuda_graphs(
input_buffers, **kwargs)
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
# update name in weights before passing to loader
updated_weights = []
for name, loaded_weight in weights:
name = name.replace("backbone", "model")
updated_weights.append((name, loaded_weight))
loader = AutoWeightsLoader(self)
return loader.load_weights(updated_weights)