Files
vllm-dev/vllm/model_executor/models/minimax_text_01.py
2025-08-29 09:26:34 +08:00

1432 lines
56 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only MiniMaxText01 model."""
import math
from collections.abc import Iterable
from itertools import islice
from typing import TYPE_CHECKING, Optional, Union
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
import regex as re
import torch
import torch.distributed
import torch.nn.functional as F
from einops import rearrange
from torch import nn
from transformers import MiniMaxConfig
from vllm import envs
from vllm.attention import Attention, AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import (CacheConfig, ModelConfig, VllmConfig,
get_current_vllm_config)
from vllm.distributed.communication_op import tensor_model_parallel_all_reduce
from vllm.distributed.parallel_state import (
get_pp_group, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.lightning_attn import (
lightning_attention, linear_decode_forward_triton)
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.abstract import MambaBase
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator, MambaStateShapeCalculator)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.utils import maybe_prefix
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.platforms import current_platform
from vllm.sequence import IntermediateTensors
from vllm.utils import direct_register_custom_op
from vllm.v1.attention.backends.linear_attn import LinearAttentionMetadata
from .interfaces import HasInnerState, IsHybrid
from .minimax_cache import MinimaxCacheManager, MinimaxCacheParams
from .utils import PPMissingLayer, is_pp_missing_parameter, make_layers
def replace_weight_name(name: str,
key: str = None,
to: str = None,
count: int = None,
prefix: str = None) -> str:
name = name.replace(key, to) if count is None else \
name.replace(key, to, count)
return name
def weight_loader_with_alias(alias: str):
def wrapper(func: callable):
def inner_func(param: torch.Tensor,
loaded_weight: torch.Tensor,
*args,
prefix: str = None,
**kwargs):
value = func(param, loaded_weight, *args, **kwargs)
return value
return inner_func
return wrapper
class MiniMaxText01RMSNormTP(CustomOp):
name = "MiniMaxText01RMSNormTP"
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
super().__init__()
self.tp_world = get_tensor_model_parallel_world_size()
self.tp_rank = get_tensor_model_parallel_rank()
self.weight = nn.Parameter(torch.ones(int(hidden_size /
self.tp_world)))
self.weight.weight_loader = self.weight_loader
self.variance_epsilon = eps
return
@staticmethod
def weight_loader(
param: nn.Parameter,
loaded_weight: torch.Tensor,
) -> None:
tp_world = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
shard_size = loaded_weight.shape[0] // tp_world
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
param.data.copy_(loaded_weight[shard])
return
def _forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
orig_dtype = x.dtype
x = x.to(torch.float32)
variance = x.pow(2).mean(dim=-1, keepdim=True, dtype=torch.float32)
if self.tp_world > 1:
variance = tensor_model_parallel_all_reduce(
variance) / self.tp_world
x = x * torch.rsqrt(variance + self.variance_epsilon)
weight = self.weight
if x.size(-1) != self.weight.size(0):
if self.weight.size(0) < x.size(-1):
repeat_count = (x.size(-1) + self.weight.size(0)) // x.size(-1)
full_weight = self.weight.repeat(repeat_count)
weight = full_weight[:x.size(-1)]
else:
weight = self.weight[:x.size(-1)]
x = x.to(orig_dtype) * weight
return x
def forward(
self,
x: torch.Tensor,
residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
assert residual is None, "RMSNorm does not support residual connection."
return self._forward(x)
class MiniMaxText01MLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
quant_config: Optional[QuantizationConfig] = None,
layer_idx: int = None,
prefix: str = "mlp",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
self.act_fn = SiluAndMul()
return
def forward(self, x: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class MiniMaxText01MoE(nn.Module):
def __init__(
self,
num_experts: int,
top_k: int,
hidden_size: int,
intermediate_size: int,
params_dtype: Optional[torch.dtype] = None,
layer_idx: int = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "moe",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.tp_size = get_tensor_model_parallel_world_size()
self.num_total_experts = num_experts
self.top_k = top_k
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size // self.tp_size
self.quant_config = quant_config
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
self.gate = ReplicatedLinear(
self.hidden_size,
self.num_total_experts,
bias=False,
params_dtype=torch.float32,
quant_config=None,
prefix=f"{prefix}.gate",
)
self.gate.weight.weight_loader = MiniMaxText01MoE.gate_weight_loader
self.experts = FusedMoE(
num_experts=self.num_total_experts,
top_k=self.top_k,
hidden_size=self.hidden_size,
intermediate_size=self.intermediate_size * self.tp_size,
params_dtype=self.params_dtype,
reduce_results=True,
renormalize=True,
quant_config=self.quant_config,
tp_size=self.tp_size,
prefix=f"{prefix}.experts",
)
return
@staticmethod
def gate_weight_loader(param: nn.Parameter,
loaded_weight: torch.Tensor) -> None:
assert param.size() == loaded_weight.size()
param.data.copy_(loaded_weight.to(torch.float32))
return
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_size = hidden_states.shape
hidden_states = hidden_states.view(-1, self.hidden_size)
router_logits_fp32, _ = self.gate(hidden_states.to(torch.float32))
final_hidden_states = self.experts(
hidden_states, router_logits_fp32.to(hidden_states.dtype))
final_hidden = final_hidden_states.view(num_tokens, hidden_size)
return final_hidden
class MiniMaxText01LinearKernel:
@staticmethod
def jit_linear_forward_prefix(q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
kv_caches: torch.Tensor,
slope_rate: torch.Tensor,
block_size: int,
layer_idx: int = None,
**kwargs) -> torch.Tensor:
slope_rate = slope_rate.to(torch.float32)
should_pad_dim = q.dim() == 3
if should_pad_dim:
q = q.unsqueeze(0)
k = k.unsqueeze(0)
v = v.unsqueeze(0)
b, h, n, d = q.shape
e = d
kv_history = kv_caches.reshape(1, h, d, e).contiguous()
output, kv_history = lightning_attention(q,
k,
v,
slope_rate,
block_size=block_size,
kv_history=kv_history)
kv_caches.copy_(kv_history[:, :, -1, :, :].reshape(h, d, e))
assert output.shape[0] == 1, "batch size must be 1"
return rearrange(output.squeeze(0), "h n d -> n (h d)")
class MiniMaxText01LinearAttention(nn.Module, MambaBase):
@property
def mamba_type(self) -> str:
return "linear_attention"
def get_attn_backend(self) -> type["AttentionBackend"]:
from vllm.v1.attention.backends.linear_attn import (
LinearAttentionBackend)
return LinearAttentionBackend
def get_state_dtype(self) -> tuple[torch.dtype]:
return MambaStateDtypeCalculator.linear_attention_state_dtype(
self.model_config.dtype,
self.cache_config.mamba_cache_dtype,
)
def get_state_shape(self) -> tuple[tuple[int, ...], tuple[int, ...]]:
return MambaStateShapeCalculator.linear_attention_state_shape(
num_heads=self.num_heads,
tp_size=self.tp_size,
head_dim=self.head_dim)
def __init__(
self,
hidden_size: int,
hidden_inner_size: int,
num_heads: int,
head_dim: int,
max_position: int,
block_size: int,
num_hidden_layer: int,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
layer_idx: int = 0,
linear_layer_idx: int = 0,
prefix: str = "linear_attn",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.BLOCK = block_size
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = head_dim
self.total_num_heads = num_heads
self.hidden_inner_size = hidden_inner_size
self.tp_size = get_tensor_model_parallel_world_size()
self.tp_rank = get_tensor_model_parallel_rank()
assert self.total_num_heads % self.tp_size == 0
self.tp_heads = self.total_num_heads // self.tp_size
self.qkv_size = self.num_heads * self.head_dim
self.tp_hidden = self.head_dim * self.tp_heads
self.model_config = model_config
self.cache_config = cache_config
self.prefix = prefix
self.qkv_proj = ColumnParallelLinear(
hidden_size,
self.hidden_inner_size * 3,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.output_gate = ColumnParallelLinear(
hidden_size,
self.hidden_inner_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.output_gate",
)
self.out_proj = RowParallelLinear(
self.hidden_inner_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
self.norm = MiniMaxText01RMSNormTP(
self.hidden_inner_size,
eps=1e-5,
)
slope_rate = MiniMaxText01LinearAttention._build_slope_tensor(
self.num_heads)
if num_hidden_layer <= 1:
self.slope_rate = slope_rate * (1 + 1e-5)
else:
self.slope_rate = slope_rate * (1 - layer_idx /
(num_hidden_layer - 1) + 1e-5)
self.tp_slope = self.slope_rate[self.tp_rank *
self.tp_heads:(self.tp_rank + 1) *
self.tp_heads].contiguous()
if envs.VLLM_USE_V1:
compilation_config = get_current_vllm_config().compilation_config
if prefix in compilation_config.static_forward_context:
raise ValueError(f"Duplicate layer name: {prefix}")
compilation_config.static_forward_context[prefix] = self
@staticmethod
def weight_direct_load(param: torch.Tensor,
loaded_weight: torch.Tensor) -> None:
assert param.size() == loaded_weight.size()
param.data.copy_(loaded_weight)
return
@staticmethod
def _build_slope_tensor(n_attention_heads: int):
def get_slopes(n):
def get_slopes_power_of_2(n):
start = 2**(-(2**-(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
if math.log2(n).is_integer():
return get_slopes_power_of_2(n)
else:
closest_power_of_2 = 2**math.floor(math.log2(n))
return (get_slopes_power_of_2(closest_power_of_2) + get_slopes(
2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
slopes = torch.tensor(get_slopes(n_attention_heads),
dtype=torch.float32).reshape(
n_attention_heads, 1, 1)
return slopes
def _prefill_and_mix_infer(self, q, k, v, kv_cache, state_indices_tensor,
attn_metadata):
hidden = []
for _prefill_idx in range(getattr(attn_metadata, "num_prefills", 0)):
if _prefill_idx >= len(attn_metadata.query_start_loc):
break
if _prefill_idx >= len(state_indices_tensor):
break
# prefills are packed at end of batch in V1
offset = attn_metadata.num_decode_tokens if envs.VLLM_USE_V1 else 0
_start = attn_metadata.query_start_loc[offset + _prefill_idx]
_end = attn_metadata.query_start_loc[offset + _prefill_idx + 1]
slot_id = state_indices_tensor[offset + _prefill_idx]
qs = q[_start:_end].transpose(0, 1).contiguous()
ks = k[_start:_end].transpose(0, 1).contiguous()
vs = v[_start:_end].transpose(0, 1).contiguous()
slice_layer_cache = kv_cache[slot_id, ...]
out_slice = MiniMaxText01LinearKernel.jit_linear_forward_prefix(
qs,
ks,
vs,
slice_layer_cache,
self.tp_slope,
self.BLOCK,
layer_idx=self.layer_idx)
hidden.append(out_slice.contiguous())
if attn_metadata.num_decode_tokens > 0:
hidden_decode = self._decode_infer(q, k, v, kv_cache,
state_indices_tensor,
attn_metadata)
if envs.VLLM_USE_V1:
hidden.insert(0, hidden_decode)
else:
hidden.append(hidden_decode)
if not hidden:
return torch.empty((0, q.size(-1)), device=q.device, dtype=q.dtype)
hidden = torch.concat(hidden, dim=0).contiguous()
return hidden
def _decode_infer(self, q, k, v, kv_cache, state_indices_tensor,
attn_metadata):
if not envs.VLLM_USE_V1:
q = q[attn_metadata.num_prefill_tokens:].unsqueeze(2).contiguous()
k = k[attn_metadata.num_prefill_tokens:].unsqueeze(2).contiguous()
v = v[attn_metadata.num_prefill_tokens:].unsqueeze(2).contiguous()
num_prefills = getattr(attn_metadata, "num_prefills", 0)
slot_id = state_indices_tensor[num_prefills:]
else:
q = q[:attn_metadata.num_decode_tokens].unsqueeze(2).contiguous()
k = k[:attn_metadata.num_decode_tokens].unsqueeze(2).contiguous()
v = v[:attn_metadata.num_decode_tokens].unsqueeze(2).contiguous()
slot_id = state_indices_tensor[:attn_metadata.num_decodes]
hidden = linear_decode_forward_triton(q, k, v, kv_cache, self.tp_slope,
slot_id, 32)
return hidden
def forward(self, hidden_states: torch.Tensor, output: torch.Tensor,
positions: torch.Tensor,
kv_caches: MinimaxCacheParams) -> None:
if not envs.VLLM_USE_V1:
self._forward(hidden_states, output, positions, kv_caches)
else:
torch.ops.vllm.linear_attention(
hidden_states,
output,
positions,
self.prefix,
)
def _forward(self, hidden_states: torch.Tensor, output: torch.Tensor,
positions: torch.Tensor,
kv_caches: Optional[MinimaxCacheParams]) -> None:
forward_context = get_forward_context()
attn_metadata: AttentionMetadata = forward_context.attn_metadata
if envs.VLLM_USE_V1 and attn_metadata is not None:
assert isinstance(attn_metadata, dict)
attn_metadata = attn_metadata[self.prefix]
assert isinstance(attn_metadata, LinearAttentionMetadata)
num_actual_tokens = attn_metadata.num_prefill_tokens + \
attn_metadata.num_decode_tokens
else:
num_actual_tokens = hidden_states.shape[0]
qkv, _ = self.qkv_proj(hidden_states[:num_actual_tokens])
qkv32 = qkv.to(torch.float32)
qkvact = torch.nn.functional.silu(qkv32)
qkvact = qkvact.view((qkv.shape[0], self.tp_heads, -1))
q, k, v = torch.split(qkvact, [self.head_dim] * 3, dim=-1)
if envs.VLLM_USE_V1:
if attn_metadata is not None:
kv_cache = self.kv_cache[forward_context.virtual_engine][0]
state_indices_tensor = attn_metadata.state_indices_tensor
num_prefills = getattr(attn_metadata, "num_prefills", 0)
if num_prefills > 0:
num_decode_tokens = getattr(attn_metadata,
"num_decode_tokens", 0)
for prefill_idx in range(num_prefills):
q_start = attn_metadata.query_start_loc[
num_decode_tokens + prefill_idx]
q_end = attn_metadata.query_start_loc[num_decode_tokens
+ prefill_idx +
1]
query_len = q_end - q_start
context_len = attn_metadata.seq_lens[
num_decode_tokens + prefill_idx] - query_len
if context_len == 0:
block_to_clear = state_indices_tensor[
num_decode_tokens + prefill_idx]
kv_cache[block_to_clear, ...] = 0
else:
kv_cache = kv_caches.minimax_cache
state_indices_tensor = kv_caches.state_indices_tensor
decode_only = getattr(attn_metadata, "num_prefills", 0) == 0
if attn_metadata is None:
hidden = torch.empty((q.shape[0], q.shape[1] * q.shape[2]),
device=q.device,
dtype=q.dtype)
else:
if not decode_only:
hidden = self._prefill_and_mix_infer(q, k, v, kv_cache,
state_indices_tensor,
attn_metadata)
else:
hidden = self._decode_infer(q, k, v, kv_cache,
state_indices_tensor,
attn_metadata)
hidden = self.norm._forward(hidden)
gate, _ = self.output_gate(hidden_states[:num_actual_tokens])
hidden = F.sigmoid(gate) * hidden
hidden = hidden.to(hidden_states.dtype)
output[:num_actual_tokens], _ = self.out_proj(hidden)
class MiniMaxText01Attention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
head_dim: int,
num_kv_heads: int,
rotary_dim: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
sliding_window: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
layer_idx: int = None,
cache_config: Optional[CacheConfig] = None,
prefix: str = "mha",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
assert self.total_num_kv_heads % tp_size == 0
else:
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.prefix = prefix
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
self.rotary_emb = get_rope(
head_size=self.head_dim,
rotary_dim=rotary_dim,
max_position=max_position,
base=int(rope_theta),
is_neox_style=True,
dtype=torch.float32,
)
return
def forward(self, hidden_states: torch.Tensor, output: torch.Tensor,
positions: torch.Tensor, **kwargs) -> None:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output[:], _ = self.o_proj(attn_output)
class MiniMaxText01DecoderLayer(nn.Module):
def __init__(
self,
config: MiniMaxConfig,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
expert_num: int = 1,
layer_id: int = None,
linear_layer_id: Optional[int] = None,
prefix: str = "decoder",
) -> None:
self._ilayer = layer_id
self._irank = get_tensor_model_parallel_rank()
self.prefix = prefix
super().__init__()
self.hidden_size = config.hidden_size
self.expert_num = expert_num
rope_theta = getattr(config, "rope_theta", 10000)
head_dim = getattr(config, "head_dim", None)
if head_dim is None:
head_dim = config.hidden_size // config.num_attention_heads
if hasattr(config, "max_model_len") and isinstance(
config.max_model_len, int):
max_position_embeddings = min(config.max_position_embeddings,
config.max_model_len)
if config.attention_type == 0:
use_headxdim = True
hidden_inner = (head_dim * config.num_attention_heads
if use_headxdim else config.hidden_size)
self.self_attn = MiniMaxText01LinearAttention(
hidden_size=self.hidden_size,
hidden_inner_size=hidden_inner,
num_heads=config.num_attention_heads,
head_dim=head_dim,
max_position=max_position_embeddings,
block_size=config.block if hasattr(config, "block") else 256,
num_hidden_layer=config.num_hidden_layers,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
layer_idx=self._ilayer,
linear_layer_idx=linear_layer_id,
prefix=prefix)
elif config.attention_type == 1:
self.self_attn = MiniMaxText01Attention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
head_dim=head_dim,
rotary_dim=config.rotary_dim
if hasattr(config, "rotary_dim") else head_dim,
num_kv_heads=config.num_key_value_heads,
max_position=max_position_embeddings,
rope_theta=rope_theta,
sliding_window=config.sliding_window,
quant_config=quant_config,
layer_idx=self._ilayer,
cache_config=cache_config,
prefix=prefix)
else:
raise ValueError(
f"Unsupported attention type: {self.config.attention_type}")
if expert_num == 1:
self.mlp = MiniMaxText01MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
quant_config=quant_config,
layer_idx=self._ilayer,
prefix=prefix)
else:
self.block_sparse_moe = MiniMaxText01MoE(
num_experts=expert_num,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
layer_idx=self._ilayer,
quant_config=quant_config,
prefix=prefix)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
if config.attention_type == 0:
self.layernorm_attention_alpha = getattr(
config, 'layernorm_linear_attention_alpha',
getattr(config, 'linear_attn_alpha_factor', 1))
self.layernorm_attention_beta = getattr(
config, 'layernorm_linear_attention_beta',
getattr(config, 'linear_attn_beta_factor', 1))
else:
self.layernorm_attention_alpha = getattr(
config, 'layernorm_full_attention_alpha',
getattr(config, 'full_attn_alpha_factor', 1))
self.layernorm_attention_beta = getattr(
config, 'layernorm_full_attention_beta',
getattr(config, 'full_attn_beta_factor', 1))
self.layernorm_mlp_alpha = getattr(
config, 'layernorm_mlp_alpha',
getattr(config, 'mlp_alpha_factor', 1))
self.layernorm_mlp_beta = getattr(
config, 'layernorm_mlp_beta', getattr(config, 'mlp_beta_factor',
1))
self.postnorm = getattr(config, 'postnorm', False)
self.shared_moe = False
shared_intermediate = getattr(config, 'shared_intermediate_size', 0)
if isinstance(shared_intermediate, list):
shared_intermediate = shared_intermediate[
layer_id] if layer_id < len(shared_intermediate) else 0
if shared_intermediate > 0:
self.shared_moe = True
self.shared_mlp = MiniMaxText01MLP(
hidden_size=self.hidden_size,
intermediate_size=shared_intermediate,
quant_config=quant_config,
layer_idx=self._ilayer,
prefix=prefix)
self.coefficient = ReplicatedLinear(
self.hidden_size,
1,
bias=False,
quant_config=quant_config,
params_dtype=torch.float32,
)
self.coefficient.weight.weight_loader = (
self.shared_moe_coefficient_loader)
self.shared_moe_mode = getattr(config, 'shared_moe_mode',
'softmax')
return
def forward(self,
hidden_states: torch.Tensor,
positions: torch.Tensor,
kv_caches: Union[list[dict], Optional[torch.Tensor]],
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
is_warmup: bool = False,
**kwargs) -> tuple[torch.Tensor, torch.Tensor]:
layernorm_input = hidden_states
layernorm_output = self.input_layernorm(layernorm_input)
residual = layernorm_output if self.postnorm else layernorm_input
self_attention_output = torch.empty_like(layernorm_output)
self.self_attn(
hidden_states=layernorm_output,
output=self_attention_output,
positions=positions,
kv_caches=kv_caches,
)
residual = residual * self.layernorm_attention_alpha
self_attention_output = (self_attention_output *
self.layernorm_attention_beta)
layernorm_input = residual + self_attention_output
layernorm_output = self.post_attention_layernorm(layernorm_input)
residual = layernorm_output if self.postnorm else layernorm_input
if self.expert_num == 1:
hidden_states = self.mlp(layernorm_output)
else:
moe_layernorm_output = layernorm_output.clone()
moe_hidden_states = self.block_sparse_moe(moe_layernorm_output)
if self.shared_moe:
before_moe_dtype = layernorm_output.dtype
moe_hidden_fp32 = moe_hidden_states.to(torch.float32)
output_mlp = self.shared_mlp(layernorm_output).to(
torch.float32)
coef, _ = self.coefficient(layernorm_output.to(torch.float32))
if self.shared_moe_mode == 'softmax':
coef = torch.nn.functional.softmax(coef, dim=-1)
hidden_states = moe_hidden_fp32 * (
1 - coef) + output_mlp * coef
elif self.shared_moe_mode == 'sigmoid':
coef = torch.nn.functional.sigmoid(coef)
hidden_states = moe_hidden_fp32 * (
1 - coef) + output_mlp * coef
hidden_states = hidden_states.to(before_moe_dtype)
else:
hidden_states = moe_hidden_states
residual = residual * self.layernorm_mlp_alpha
hidden_states = hidden_states * self.layernorm_mlp_beta
hidden_states = residual + hidden_states
return hidden_states, None
@staticmethod
def shared_moe_coefficient_loader(param: torch.Tensor,
loaded_weight: torch.Tensor) -> None:
assert param.size() == loaded_weight.size()
param.data.copy_(loaded_weight.to(torch.float32))
return
@support_torch_compile
class MiniMaxText01Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: MiniMaxConfig = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
quant_config = vllm_config.quant_config
cache_config = vllm_config.cache_config
scheduler_config = vllm_config.scheduler_config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.decoder_attention_types = getattr(
config, "attn_type_list", False) or getattr(
config, "decoder_attention_types", False)
# The HF format uses "layer_types" instead of "attn_type_list"
# where "linear_attention" is 0 and "full_attention" is 1
if not self.decoder_attention_types and hasattr(config, "layer_types"):
self.decoder_attention_types = []
for layer_type in config.layer_types:
if layer_type == "linear_attention":
self.decoder_attention_types.append(0)
elif layer_type == "full_attention":
self.decoder_attention_types.append(1)
else:
raise ValueError(f"Unsupported layer type: {layer_type}")
# Default to full attention
if not self.decoder_attention_types:
self.decoder_attention_types = [1] * config.num_hidden_layers
self.num_layers = config.num_hidden_layers
self._layer_barrier = False
if get_pp_group().is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=self.vocab_size,
)
else:
self.embed_tokens = PPMissingLayer()
def layer_fn(prefix):
layer_idx = int(prefix.split('.')[-1])
layer_config = config
layer_config.attention_type = self.decoder_attention_types[
layer_idx]
layer_config.layer_idx = layer_idx
decoder_kwargs = {
"quant_config": quant_config,
"layer_id": layer_idx,
"model_config": model_config,
"cache_config": cache_config
}
if layer_config.attention_type == 0:
decoder_kwargs["linear_layer_id"] = sum(
1 for i in range(layer_idx)
if self.decoder_attention_types[i] == 0)
else:
decoder_kwargs["linear_layer_id"] = None
if hasattr(config, "num_local_experts") and isinstance(
config.num_local_experts, list):
decoder_kwargs["expert_num"] = config.num_local_experts[
layer_idx]
elif hasattr(config, "num_local_experts") and isinstance(
config.num_local_experts, int):
decoder_kwargs["expert_num"] = config.num_local_experts
else:
decoder_kwargs["expert_num"] = 1
return MiniMaxText01DecoderLayer(layer_config,
**decoder_kwargs,
prefix=prefix)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, layer_fn, prefix=f"{prefix}.layers")
linear_layer_nums = sum(1 for i in range(config.num_hidden_layers)
if self.decoder_attention_types[i] == 0)
max_slots_number = scheduler_config.max_num_seqs
self.cache_shape = (linear_layer_nums, max_slots_number,
config.num_attention_heads //
get_tensor_model_parallel_world_size(),
config.head_dim, config.head_dim)
_dummy = torch.zeros(1)
self._dtype = _dummy.dtype
del _dummy
if not envs.VLLM_USE_V1:
self.minimax_cache = MinimaxCacheManager(
dtype=torch.float32, cache_shape=self.cache_shape)
norm_kwargs = {}
if hasattr(config, "rms_norm_eps"):
norm_kwargs["eps"] = config.rms_norm_eps
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, **norm_kwargs)
else:
self.norm = PPMissingLayer()
self.embed_scale = 1.0
return
def _clear_prefill_cache(self, attn_metadata,
minimax_cache_tensors: torch.Tensor, **kwargs):
seq_to_slot_maps = {}
seq_id_map = sum(list(kwargs["request_ids_to_seq_ids"].values()), [])
for _, seq_to_slot_map in (
self.minimax_cache.cache_indices_mapping.items()):
seq_to_slot_maps.update(seq_to_slot_map)
slots_to_clear = []
for _prefill_id in range(getattr(attn_metadata, "num_prefills", 0)):
if _prefill_id >= len(seq_id_map):
break
seq_id = seq_id_map[_prefill_id]
if attn_metadata.context_lens_tensor[
_prefill_id] == 0 and seq_id in seq_to_slot_maps:
slots_to_clear.append(seq_to_slot_maps[seq_id])
if slots_to_clear:
slots_tensor = torch.tensor(slots_to_clear,
device=minimax_cache_tensors.device,
dtype=torch.long)
minimax_cache_tensors[:, slots_tensor, ...] = 0
def get_input_embeddings(
self,
input_ids: torch.Tensor,
) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs) -> Union[torch.Tensor, IntermediateTensors]:
forward_context = get_forward_context()
attn_metadata = forward_context.attn_metadata
if not envs.VLLM_USE_V1 and attn_metadata is None:
return None
if not envs.VLLM_USE_V1:
if "request_ids_to_seq_ids" not in kwargs:
kwargs["request_ids_to_seq_ids"] = {}
if "finished_requests_ids" not in kwargs:
kwargs["finished_requests_ids"] = []
(
minimax_cache_tensors,
state_indices_tensor,
) = self.minimax_cache.current_run_tensors(**kwargs)
if getattr(attn_metadata, "num_prefills", 0) > 0:
self._clear_prefill_cache(attn_metadata, minimax_cache_tensors,
**kwargs)
minimax_cache_params = MinimaxCacheParams(minimax_cache_tensors,
state_indices_tensor)
else:
minimax_cache_params = None
if get_pp_group().is_first_rank:
if inputs_embeds is None:
hidden_states = self.embed_scale * self.embed_tokens(input_ids)
else:
hidden_states = inputs_embeds
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
minimax_cache_index = 0
for layer in islice(self.layers, self.start_layer, self.end_layer):
_caches = None
if not envs.VLLM_USE_V1 and isinstance(
layer.self_attn, MiniMaxText01LinearAttention):
current_state_layer = minimax_cache_index
_caches = minimax_cache_params.at_layer_idx(
current_state_layer)
minimax_cache_index += 1
hidden_states, residual = layer(
hidden_states=hidden_states,
positions=positions,
kv_caches=_caches,
attn_metadata=attn_metadata,
residual=residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
if residual is not None:
hidden_states, _ = self.norm(hidden_states, residual)
else:
hidden_states = self.norm(hidden_states)
return hidden_states
class MiniMaxText01ForCausalLM(nn.Module, HasInnerState, IsHybrid):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
lora_config = vllm_config.lora_config
self.config = config
self.lora_config = lora_config
if not hasattr(config, "sliding_window"):
config.sliding_window = None
self.CONCAT_FFN = True
self.unpadded_vocab_size = self.config.vocab_size
if hasattr(vllm_config.model_config, "max_model_len"):
self.config.max_model_len = vllm_config.model_config.max_model_len
self.model = MiniMaxText01Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
self.config.hidden_size,
org_num_embeddings=self.config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
self.config.vocab_size)
else:
self.lm_head = PPMissingLayer()
self.lm_head.float()
flash_layer_count = sum(
1 for attn_type in self.model.decoder_attention_types
if attn_type == 1)
self.kv_cache = [torch.tensor([]) for _ in range(flash_layer_count)]
return
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
return self.model.minimax_cache.copy_inputs_before_cuda_graphs(
input_buffers, **kwargs)
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
return self.model.minimax_cache.get_seqlen_agnostic_capture_inputs(
batch_size)
def get_input_embeddings(
self,
input_ids: torch.Tensor,
) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds, **kwargs)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states.float(),
sampling_metadata)
return logits
def make_empty_intermediate_tensors(
self, batch_size: int, dtype: torch.dtype,
device: torch.device) -> IntermediateTensors:
return IntermediateTensors({
"hidden_states":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
"residual":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
})
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
def which_layer(name: str) -> int:
if "layers" in name:
after_layer = name.split("layers")[-1]
return int(after_layer.split(".")[1])
return None
def is_linear_attn_layer(layer_idx: int) -> bool:
if layer_idx is None or layer_idx >= len(
self.model.decoder_attention_types):
return False
return self.model.decoder_attention_types[layer_idx] == 0
def is_moe_weight(name: str) -> bool:
return "block_sparse_moe" in name and not name.endswith(".bias")
def get_expert_id(param_name):
pattern = r'model\.layers\.\d+\.block_sparse_moe\.experts\.(\d+)\.'
match = re.search(pattern, param_name)
if match:
return match.group(1)
return None
def load_sparse_moe_weight(name: str, loaded_weight: torch.Tensor,
self) -> None:
if isinstance(self.config.num_local_experts, list):
expert_params_mapping = [
("w13_weight"
if weight_name in ["w1", "w3"] else "w2_weight",
f"experts.{expert_id}.{weight_name}.weight", expert_id)
for expert_id in range(max(self.config.num_local_experts))
for weight_name in ["w1", "w2", "w3"]
]
else:
expert_params_mapping = [
("w13_scale" if weight_name in ["w1", "w3"] else
"w2_scale", f"{expert_id}.{weight_name}.weight_scale",
expert_id, weight_name)
for expert_id in range(self.config.num_local_experts)
for weight_name in ["w1", "w2", "w3"]
] + [("w13_weight" if weight_name in ["w1", "w3"] else
"w2_weight", f"{expert_id}.{weight_name}.weight",
expert_id, weight_name)
for expert_id in range(self.config.num_local_experts)
for weight_name in ["w1", "w2", "w3"]]
for (param_name, weight_name, expert_id,
shard_id) in expert_params_mapping:
name_expert_id = get_expert_id(name)
if name_expert_id is not None and int(name_expert_id) != int(
expert_id):
continue
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param,
loaded_weight,
weight_name,
expert_id=expert_id,
shard_id=shard_id)
loaded_params.add(name)
break
else:
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return
def is_shared_mlp_weight(name: str) -> bool:
return "shared_mlp" in name and not name.endswith(".bias")
def load_shared_mlp_weight(name: str, loaded_weight: torch.Tensor,
self) -> None:
if not self.CONCAT_FFN:
if "gate_proj" in name:
name = name.replace("gate_proj", "w1", 1)
elif "up_proj" in name:
name = name.replace("up_proj", "w3", 1)
elif "down_proj" in name:
name = name.replace("down_proj", "w2", 1)
else:
if "gate_proj" in name:
name = name.replace("gate_proj", "gate_up_proj", 1)
loaded_shard_id = 0
elif "up_proj" in name:
name = name.replace("up_proj", "gate_up_proj", 1)
loaded_shard_id = 1
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
if not self.CONCAT_FFN:
weight_loader(param, loaded_weight)
else:
if "gate_up_proj" in name:
weight_loader(param, loaded_weight, loaded_shard_id)
elif "down_proj" in name:
weight_loader(param, loaded_weight)
else:
raise AssertionError(
"MLP weight not in [gate_up_proj, down_proj]")
loaded_params.add(name)
return
def is_mha_weight(name: str) -> bool:
return "self_attn" in name and not name.endswith(".bias")
def load_linear_attn_weight(name: str, loaded_weight: torch.Tensor,
self) -> None:
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader",
MiniMaxText01LinearAttention.weight_direct_load)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return
def load_flash_attn_weight(name: str, loaded_weight: torch.Tensor,
self) -> None:
flash_mha_params_mapping = [
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
for (param_name, weight_name,
shard_id) in flash_mha_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight, shard_id)
loaded_params.add(name)
break
else:
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return
def is_layer_norm_weight(name: str) -> bool:
return "norm" in name and not name.endswith(
".bias") and name in params_dict
def load_layer_norm_weight(name: str, loaded_weight: torch.Tensor,
self) -> None:
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return
def load_basic_weight(name: str, loaded_weight: torch.Tensor,
self) -> None:
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return
for name, loaded_weight in weights:
weight_at_layer = which_layer(name)
if weight_at_layer and weight_at_layer >= len(
self.model.decoder_attention_types):
continue
if is_layer_norm_weight(name):
load_layer_norm_weight(name, loaded_weight, self)
continue
if is_mha_weight(name):
if is_linear_attn_layer(weight_at_layer):
load_linear_attn_weight(name, loaded_weight, self)
else:
load_flash_attn_weight(name, loaded_weight, self)
continue
if is_moe_weight(name):
load_sparse_moe_weight(name, loaded_weight, self)
continue
if is_shared_mlp_weight(name):
load_shared_mlp_weight(name, loaded_weight, self)
continue
if "rotary_emb.inv_freq" in name:
continue
load_basic_weight(name, loaded_weight, self)
return loaded_params
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, torch.dtype]:
return MambaStateDtypeCalculator.linear_attention_state_dtype(
vllm_config.model_config.dtype,
vllm_config.cache_config.mamba_cache_dtype,
)
@classmethod
def get_mamba_state_shape_from_config(
cls,
vllm_config: "VllmConfig",
use_v1: bool = True,
) -> tuple[tuple[int, ...], ...]:
"""Calculate shape for MiniMaxText01LinearAttention cache.
Args:
vllm_config: vLLM config
use_v1: Get shapes for V1 (or V0)
Returns:
Tuple containing:
- state_shape: Shape of the cache
"""
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
return MambaStateShapeCalculator.linear_attention_state_shape(
num_heads=hf_config.num_attention_heads,
tp_size=parallel_config.tensor_parallel_size,
head_dim=hf_config.head_dim,
)
def linear_attention(
hidden_states: torch.Tensor,
output: torch.Tensor,
positions: torch.Tensor,
layer_name: str,
) -> None:
forward_context: ForwardContext = get_forward_context()
self = forward_context.no_compile_layers[layer_name]
self._forward(hidden_states=hidden_states,
output=output,
positions=positions,
kv_caches=None)
def linear_attention_fake(
hidden_states: torch.Tensor,
output: torch.Tensor,
positions: torch.Tensor,
layer_name: str,
) -> None:
return
direct_register_custom_op(
op_name="linear_attention",
op_func=linear_attention,
mutates_args=["output"],
fake_impl=linear_attention_fake,
dispatch_key=current_platform.dispatch_key,
)