Files
vllm-dev/vllm/model_executor/models/jamba.py
2025-08-29 09:26:34 +08:00

631 lines
25 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only Jamba model."""
from collections.abc import Iterable
from itertools import islice
from typing import Optional
import torch
from torch import nn
from transformers import JambaConfig
from vllm import envs
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba_mixer import MambaMixer
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator, MambaStateShapeCalculator)
from vllm.model_executor.layers.pooler import DispatchPooler, Pooler
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.llama import LlamaMLP as JambaMLP
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
MambaCacheParams)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.utils import LayerBlockType
from .interfaces import HasInnerState, IsHybrid, SupportsLoRA, SupportsPP
from .utils import (AutoWeightsLoader, WeightsMapper, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
class JambaMoE(nn.Module):
def __init__(self,
config: JambaConfig,
num_experts: Optional[int] = None,
top_k: Optional[int] = None,
params_dtype: Optional[torch.dtype] = None,
tp_size: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.num_total_experts = num_experts or config.num_experts
self.top_k = top_k or config.num_experts_per_tok
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
if self.num_total_experts > 1:
self.router = ReplicatedLinear(self.hidden_size,
self.num_total_experts,
bias=False,
quant_config=None,
params_dtype=params_dtype)
self.experts = FusedMoE(self.num_total_experts,
self.top_k,
self.hidden_size,
self.intermediate_size,
tp_size=tp_size,
params_dtype=params_dtype,
reduce_results=True,
renormalize=False,
use_grouped_topk=False,
quant_config=quant_config,
prefix=f"{prefix}.experts")
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(-1, self.hidden_size)
# router_logits: (batch * sequence_length, n_experts)
if self.num_total_experts > 1:
router_logits, _ = self.router(hidden_states)
else:
router_logits = torch.ones((hidden_states.shape[0], 1),
device=hidden_states.device,
dtype=hidden_states.dtype)
hidden_states = self.experts(hidden_states, router_logits)
return hidden_states.view(orig_shape)
class JambaMambaDecoderLayer(nn.Module):
def __init__(self,
config: JambaConfig,
layer_idx: int,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
is_lora_enabled: Optional[bool] = False,
prefix: str = "",
**kwargs) -> None:
super().__init__()
self.config = config
self.is_lora_enabled = is_lora_enabled
self.mamba = MambaMixer(hidden_size= config.hidden_size,
ssm_state_size = config.mamba_d_state,
conv_kernel_size = config.mamba_d_conv,
intermediate_size = config.mamba_expand *\
config.hidden_size,
time_step_rank = config.mamba_dt_rank,
use_conv_bias = config.mamba_conv_bias,
use_bias = config.mamba_proj_bias,
use_rms_norm=True,
rms_norm_eps=config.rms_norm_eps,
activation=config.hidden_act,
is_lora_enabled = self.is_lora_enabled,
model_config=model_config,
cache_config=cache_config,
prefix=f"{prefix}.mixer",
)
num_experts = config.layers_num_experts[layer_idx]
if num_experts > 1:
self.feed_forward = JambaMoE(
config,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
else:
self.feed_forward = JambaMLP(
config.hidden_size,
config.intermediate_size,
config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.pre_ff_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
mamba_cache_params: MambaCacheParams,
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
output = torch.empty_like(hidden_states)
self.mamba(hidden_states, output, mamba_cache_params)
# Fully Connected
hidden_states, residual = self.pre_ff_layernorm(output, residual)
hidden_states = self.feed_forward(hidden_states)
return hidden_states, residual
class JambaAttentionDecoderLayer(nn.Module):
def __init__(self,
config: JambaConfig,
layer_idx: int,
model_config: Optional[ModelConfig] = None,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
**kwargs) -> None:
super().__init__()
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = config.hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
)
self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
config.hidden_size,
bias=False,
quant_config=quant_config)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
prefix=f"{prefix}.attn",
)
num_experts = config.layers_num_experts[layer_idx]
if num_experts > 1:
self.feed_forward = JambaMoE(
config,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
else:
self.feed_forward = JambaMLP(
config.hidden_size,
config.intermediate_size,
config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.pre_ff_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def self_attention(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
**kwargs,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attention(
positions=positions,
hidden_states=hidden_states,
)
# Fully Connected
hidden_states, residual = self.pre_ff_layernorm(
hidden_states, residual)
hidden_states = self.feed_forward(hidden_states)
return hidden_states, residual
ALL_DECODER_LAYER_TYPES = {
"attention": JambaAttentionDecoderLayer,
"mamba": JambaMambaDecoderLayer
}
@support_torch_compile
class JambaModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
lora_vocab = ((lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0)
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
extra_kwargs = {"is_lora_enabled": bool(vllm_config.lora_config)}
def get_layer(prefix: str):
layer_idx = int(prefix.rsplit(".", 1)[1])
layer_class = ALL_DECODER_LAYER_TYPES[
config.layers_block_type[layer_idx]]
return layer_class(config,
layer_idx,
model_config,
cache_config,
quant_config=quant_config,
prefix=prefix,
**extra_kwargs)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers")
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
self.final_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
mamba_cache_params: MambaCacheParams,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
kv_cache_index = 0
mamba_cache_index = 0
for layer in islice(self.layers, self.start_layer, self.end_layer):
layer_mamba_cache_params = None
if isinstance(layer, JambaAttentionDecoderLayer):
kv_cache_index += 1
if isinstance(layer,
JambaMambaDecoderLayer) and mamba_cache_params:
current_state_layer = mamba_cache_index
layer_mamba_cache_params = mamba_cache_params.at_layer_idx(
current_state_layer)
mamba_cache_index += 1
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
residual=residual,
mamba_cache_params=layer_mamba_cache_params)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.final_layernorm(hidden_states, residual)
return hidden_states
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
return FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.num_experts)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = self.get_expert_mapping()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
if 'experts' in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for (
param_name,
weight_name,
expert_id,
shard_id,
) in expert_params_mapping:
if weight_name not in name:
continue
if is_pp_missing_parameter(name, self):
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class JambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA, SupportsPP,
IsHybrid):
hf_to_vllm_mapper = WeightsMapper(orig_to_new_substr={
".self_attn.": ".",
".A_log": ".A"
}, )
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": ["gate_proj", "up_proj"],
"in_proj": ["in_proj"],
}
# LoRA specific attributes
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
lora_config = vllm_config.lora_config
scheduler_config = vllm_config.scheduler_config
assert not cache_config.enable_prefix_caching, \
"Jamba currently does not support prefix caching"
super().__init__()
self.config = config
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.scheduler_config = scheduler_config
self.model = JambaModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
)
# Used to track and store by the Mamba cache between steps.
self.mamba_cache: Optional[MambaCacheManager] = None
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs):
# NOTE: mamba_cache_params is not needed for v1
mamba_cache_params = None
if not envs.VLLM_USE_V1:
if self.mamba_cache is None:
num_layers = self.model_config.get_num_layers_by_block_type(
self.vllm_config.parallel_config, LayerBlockType.mamba)
state_shape = self.get_mamba_state_shape_from_config(
self.vllm_config)
state_dtype = self.get_mamba_state_dtype_from_config(
self.vllm_config)
self.mamba_cache = MambaCacheManager(self.vllm_config,
num_layers, *state_shape,
*state_dtype)
mamba_cache_params = self.mamba_cache.current_run_tensors(**kwargs)
hidden_states = self.model(input_ids, positions, mamba_cache_params,
intermediate_tensors, inputs_embeds)
return hidden_states
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
return self.mamba_cache.copy_inputs_before_cuda_graphs(
input_buffers, **kwargs)
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, torch.dtype]:
return MambaStateDtypeCalculator.mamba1_state_dtype(
vllm_config.model_config.dtype,
vllm_config.cache_config.mamba_cache_dtype,
vllm_config.cache_config.mamba_ssm_cache_dtype,
)
@classmethod
def get_mamba_state_shape_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[tuple[int, int], tuple[int, int]]:
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
hidden_size = hf_config.hidden_size
return MambaStateShapeCalculator.mamba1_state_shape(
tp_world_size=parallel_config.tensor_parallel_size,
intermediate_size=hf_config.mamba_expand * hidden_size,
state_size=hf_config.mamba_d_state,
conv_kernel=hf_config.mamba_d_conv,
use_v1=envs.VLLM_USE_V1,
)
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return self.model.get_expert_mapping()
class JambaForSequenceClassification(JambaForCausalLM):
is_pooling_model = True
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
config = vllm_config.model_config.hf_config
num_labels: int = config.num_labels
score_bias: bool = getattr(config, 'score_bias', False)
# TODO: The original reward weights have float32 accuracy data, we
# would like to load them in fp32 to get that extra precision.
# Currently weight_loader passes the weight which is already in bf16
self.score = nn.Linear(
config.hidden_size,
num_labels,
bias=score_bias,
dtype=torch.float32,
)
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
self.pooler = DispatchPooler({
"encode":
Pooler.for_encode(pooler_config),
"classify":
Pooler.for_classify(
pooler_config,
classifier=self.score,
),
})