411 lines
17 KiB
Python
411 lines
17 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import os
|
|
import time
|
|
from collections import defaultdict
|
|
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
|
|
|
import msgspec
|
|
|
|
import vllm.platforms
|
|
from vllm.config import ParallelConfig
|
|
from vllm.distributed import get_pp_group
|
|
from vllm.executor.msgspec_utils import decode_hook, encode_hook
|
|
from vllm.logger import init_logger
|
|
from vllm.platforms import current_platform
|
|
from vllm.sequence import ExecuteModelRequest, IntermediateTensors
|
|
from vllm.utils import get_ip
|
|
from vllm.worker.worker_base import WorkerWrapperBase
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.v1.core.sched.output import SchedulerOutput
|
|
from vllm.v1.outputs import ModelRunnerOutput
|
|
|
|
logger = init_logger(__name__)
|
|
PG_WAIT_TIMEOUT = 1800
|
|
|
|
try:
|
|
import ray
|
|
from ray.util import placement_group_table
|
|
from ray.util.placement_group import PlacementGroup
|
|
try:
|
|
from ray._private.state import available_resources_per_node
|
|
except ImportError:
|
|
# Ray 2.9.x doesn't expose `available_resources_per_node`
|
|
from ray._private.state import state as _state
|
|
available_resources_per_node = _state._available_resources_per_node
|
|
|
|
class RayWorkerWrapper(WorkerWrapperBase):
|
|
"""Ray wrapper for vllm.worker.Worker, allowing Worker to be
|
|
lazily initialized after Ray sets CUDA_VISIBLE_DEVICES."""
|
|
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
super().__init__(*args, **kwargs)
|
|
# Since the compiled DAG runs a main execution
|
|
# in a different thread that calls cuda.set_device.
|
|
# The flag indicates is set_device is called on
|
|
# that thread.
|
|
self.compiled_dag_cuda_device_set = False
|
|
|
|
self.input_decoder = msgspec.msgpack.Decoder(ExecuteModelRequest,
|
|
dec_hook=decode_hook)
|
|
self.output_encoder = msgspec.msgpack.Encoder(enc_hook=encode_hook)
|
|
|
|
def get_node_ip(self) -> str:
|
|
return get_ip()
|
|
|
|
def get_node_and_gpu_ids(self) -> Tuple[str, List[int]]:
|
|
node_id = ray.get_runtime_context().get_node_id()
|
|
device_key = vllm.platforms.current_platform.ray_device_key
|
|
if not device_key:
|
|
raise RuntimeError("current platform %s does not support ray.",
|
|
vllm.platforms.current_platform.device_name)
|
|
gpu_ids = ray.get_runtime_context().get_accelerator_ids(
|
|
)[device_key]
|
|
return node_id, gpu_ids
|
|
|
|
def execute_model_spmd(
|
|
self, req_or_tuple: Union[bytes,
|
|
Tuple[bytes,
|
|
Optional[IntermediateTensors]]]
|
|
) -> bytes:
|
|
"""Execute model in SPMD fashion: used only when SPMD worker and
|
|
compiled DAG are both enabled.
|
|
|
|
Args:
|
|
req_or_tuple: A request or a tuple containing the
|
|
request and intermediate tensors. Intermediate tensors are
|
|
None unless if it is provided because it is > 0 pipeline
|
|
stage. The request is serialized by msgspec.
|
|
"""
|
|
if isinstance(req_or_tuple, bytes):
|
|
serialized_req, intermediate_tensors = req_or_tuple, None
|
|
else:
|
|
serialized_req, intermediate_tensors = req_or_tuple
|
|
|
|
execute_model_req = self.input_decoder.decode(serialized_req)
|
|
|
|
# TODO(swang): This is needed right now because Ray Compiled Graph
|
|
# executes on a background thread, so we need to reset torch's
|
|
# current device.
|
|
if not self.compiled_dag_cuda_device_set:
|
|
current_platform.set_device(self.worker.device)
|
|
self.compiled_dag_cuda_device_set = True
|
|
|
|
output = self.worker._execute_model_spmd(execute_model_req,
|
|
intermediate_tensors)
|
|
# Pipeline model request and output to the next pipeline stage.
|
|
if isinstance(output, IntermediateTensors):
|
|
output = serialized_req, output
|
|
else:
|
|
output = self.output_encoder.encode(output)
|
|
|
|
return output
|
|
|
|
def setup_device_if_necessary(self):
|
|
# TODO(swang): This is needed right now because Ray CG executes
|
|
# on a background thread, so we need to reset torch's current
|
|
# device.
|
|
# We can remove this API after it is fixed in compiled graph.
|
|
assert self.worker is not None, "Worker is not initialized"
|
|
if not self.compiled_dag_cuda_device_set:
|
|
if current_platform.is_tpu():
|
|
# Not needed
|
|
pass
|
|
else:
|
|
current_platform.set_device(self.worker.device)
|
|
|
|
self.compiled_dag_cuda_device_set = True
|
|
|
|
def execute_model_ray(
|
|
self,
|
|
scheduler_output: Union["SchedulerOutput",
|
|
Tuple["SchedulerOutput",
|
|
"IntermediateTensors"]],
|
|
) -> Union["ModelRunnerOutput", Tuple["SchedulerOutput",
|
|
"IntermediateTensors"]]:
|
|
# This method is used by Ray Compiled Graph to execute the model,
|
|
# and it needs a special logic of self.setup_device_if_necessary()
|
|
self.setup_device_if_necessary()
|
|
assert self.worker is not None, "Worker is not initialized"
|
|
if isinstance(scheduler_output, tuple):
|
|
scheduler_output, intermediate_tensors = scheduler_output
|
|
else:
|
|
scheduler_output, intermediate_tensors = scheduler_output, None
|
|
output = self.worker.model_runner.execute_model(
|
|
scheduler_output, intermediate_tensors)
|
|
if isinstance(output, IntermediateTensors):
|
|
output = scheduler_output, output
|
|
elif not get_pp_group().is_last_rank:
|
|
# Case where there are no scheduled requests
|
|
# but may still be finished requests.
|
|
assert not output or not output.req_ids
|
|
output = scheduler_output, None
|
|
return output
|
|
|
|
def override_env_vars(self, vars: Dict[str, str]):
|
|
os.environ.update(vars)
|
|
|
|
ray_import_err = None
|
|
|
|
except ImportError as e:
|
|
ray = None # type: ignore
|
|
# only capture string to avoid variable references in the traceback that can
|
|
# prevent garbage collection in some cases
|
|
ray_import_err = str(e)
|
|
RayWorkerWrapper = None # type: ignore
|
|
|
|
|
|
def ray_is_available() -> bool:
|
|
"""Returns True if Ray is available."""
|
|
return ray is not None
|
|
|
|
|
|
def assert_ray_available():
|
|
"""Raise an exception if Ray is not available."""
|
|
if ray is None:
|
|
raise ValueError(f"Failed to import Ray: {ray_import_err}."
|
|
"Please install Ray with `pip install ray`.")
|
|
|
|
|
|
def _verify_bundles(placement_group: "PlacementGroup",
|
|
parallel_config: ParallelConfig, device_str: str):
|
|
"""Verify a given placement group has bundles located in the right place.
|
|
|
|
There are 2 rules.
|
|
- Warn if all tensor parallel workers cannot fit in a single node.
|
|
- Fail if driver node is not included in a placement group.
|
|
"""
|
|
assert ray.is_initialized(), (
|
|
"Ray is not initialized although distributed-executor-backend is ray.")
|
|
pg_data = placement_group_table(placement_group)
|
|
# bundle_idx -> node_id
|
|
bundle_to_node_ids = pg_data["bundles_to_node_id"]
|
|
# bundle_idx -> bundle (e.g., {"GPU": 1})
|
|
bundles = pg_data["bundles"]
|
|
# node_id -> List of bundle (e.g., {"GPU": 1})
|
|
node_id_to_bundle: Dict[str, List[Dict[str, float]]] = defaultdict(list)
|
|
|
|
for bundle_idx, node_id in bundle_to_node_ids.items():
|
|
node_id_to_bundle[node_id].append(bundles[bundle_idx])
|
|
driver_node_id = ray.get_runtime_context().get_node_id()
|
|
|
|
if driver_node_id not in node_id_to_bundle:
|
|
raise RuntimeError(
|
|
f"driver node id {driver_node_id} is not included in a placement "
|
|
f"group {placement_group.id}. Node id -> bundles "
|
|
f"{node_id_to_bundle}. "
|
|
"You don't have enough GPUs available in a current node. Check "
|
|
"`ray status` and `ray list nodes` to see if you have available "
|
|
"GPUs in a node `{driver_node_id}` before starting an vLLM engine."
|
|
)
|
|
|
|
for node_id, bundles in node_id_to_bundle.items():
|
|
if len(bundles) < parallel_config.tensor_parallel_size:
|
|
logger.warning(
|
|
"tensor_parallel_size=%d "
|
|
"is bigger than a reserved number of %ss (%d "
|
|
"%ss) in a node %s. Tensor parallel workers can be "
|
|
"spread out to 2+ nodes which can degrade the performance "
|
|
"unless you have fast interconnect across nodes, like "
|
|
"Infiniband. To resolve this issue, make sure you have more "
|
|
"than %d GPUs available at each node.",
|
|
parallel_config.tensor_parallel_size, device_str, len(bundles),
|
|
device_str, node_id, parallel_config.tensor_parallel_size)
|
|
|
|
|
|
def _wait_until_pg_ready(current_placement_group: "PlacementGroup"):
|
|
"""Wait until a placement group is ready.
|
|
|
|
It prints the informative log messages if the placement group is
|
|
not created within time.
|
|
|
|
"""
|
|
# Wait until PG is ready - this will block until all
|
|
# requested resources are available, and will timeout
|
|
# if they cannot be provisioned.
|
|
placement_group_specs = current_placement_group.bundle_specs
|
|
|
|
s = time.time()
|
|
pg_ready_ref = current_placement_group.ready()
|
|
wait_interval = 10
|
|
while time.time() - s < PG_WAIT_TIMEOUT:
|
|
ready, _ = ray.wait([pg_ready_ref], timeout=wait_interval)
|
|
if len(ready) > 0:
|
|
break
|
|
|
|
# Exponential backoff for warning print.
|
|
wait_interval *= 2
|
|
logger.info(
|
|
"Waiting for creating a placement group of specs for "
|
|
"%d seconds. specs=%s. Check `ray status` and "
|
|
"`ray list nodes` to see if you have enough resources,"
|
|
" and make sure the IP addresses used by ray cluster"
|
|
" are the same as VLLM_HOST_IP environment variable"
|
|
" specified in each node if you are running on a multi-node.",
|
|
int(time.time() - s), placement_group_specs)
|
|
|
|
try:
|
|
ray.get(pg_ready_ref, timeout=0)
|
|
except ray.exceptions.GetTimeoutError:
|
|
raise ValueError(
|
|
"Cannot provide a placement group of "
|
|
f"{placement_group_specs=} within {PG_WAIT_TIMEOUT} seconds. See "
|
|
"`ray status` and `ray list nodes` to make sure the cluster has "
|
|
"enough resources.") from None
|
|
|
|
|
|
def _wait_until_pg_removed(current_placement_group: "PlacementGroup"):
|
|
ray.util.remove_placement_group(current_placement_group)
|
|
s = time.time()
|
|
wait_interval = 10
|
|
while time.time() - s < PG_WAIT_TIMEOUT:
|
|
pg = ray.util.get_current_placement_group()
|
|
if pg is None:
|
|
break
|
|
|
|
# Exponential backoff for warning print.
|
|
wait_interval *= 2
|
|
logger.info(
|
|
"Waiting for removing a placement group of specs for "
|
|
"%d seconds.", int(time.time() - s))
|
|
time.sleep(wait_interval)
|
|
|
|
|
|
def initialize_ray_cluster(
|
|
parallel_config: ParallelConfig,
|
|
ray_address: Optional[str] = None,
|
|
):
|
|
"""Initialize the distributed cluster with Ray.
|
|
|
|
it will connect to the Ray cluster and create a placement group
|
|
for the workers, which includes the specification of the resources
|
|
for each distributed worker.
|
|
|
|
Args:
|
|
parallel_config: The configurations for parallel execution.
|
|
ray_address: The address of the Ray cluster. If None, uses
|
|
the default Ray cluster address.
|
|
"""
|
|
assert_ray_available()
|
|
from vllm.platforms import current_platform
|
|
|
|
if ray.is_initialized():
|
|
logger.info("Ray is already initialized. Skipping Ray initialization.")
|
|
elif current_platform.is_rocm() or current_platform.is_xpu():
|
|
# Try to connect existing ray instance and create a new one if not found
|
|
try:
|
|
ray.init("auto")
|
|
except ConnectionError:
|
|
logger.warning(
|
|
"No existing RAY instance detected. "
|
|
"A new instance will be launched with current node resources.")
|
|
ray.init(address=ray_address,
|
|
num_gpus=parallel_config.world_size,
|
|
runtime_env=parallel_config.ray_runtime_env)
|
|
else:
|
|
ray.init(address=ray_address,
|
|
runtime_env=parallel_config.ray_runtime_env)
|
|
|
|
device_str = current_platform.ray_device_key
|
|
if not device_str:
|
|
raise ValueError(
|
|
f"current platform {current_platform.device_name} does not "
|
|
"support ray.")
|
|
|
|
# Create or get the placement group for worker processes
|
|
if parallel_config.placement_group:
|
|
current_placement_group = parallel_config.placement_group
|
|
else:
|
|
current_placement_group = ray.util.get_current_placement_group()
|
|
|
|
if current_placement_group:
|
|
logger.info("Using the existing placement group")
|
|
|
|
# We are in a placement group
|
|
bundles = current_placement_group.bundle_specs
|
|
# Verify that we can use the placement group.
|
|
device_bundles = 0
|
|
for bundle in bundles:
|
|
bundle_devices = bundle.get(device_str, 0)
|
|
if bundle_devices > 1:
|
|
raise ValueError(
|
|
"Placement group bundle cannot have more than 1 "
|
|
f"{device_str}.")
|
|
if bundle_devices:
|
|
device_bundles += 1
|
|
if parallel_config.world_size > device_bundles:
|
|
raise ValueError(
|
|
f"The number of required {device_str}s exceeds the total "
|
|
f"number of available {device_str}s in the placement group. "
|
|
f"Required number of devices: {parallel_config.world_size}. "
|
|
f"Total number of devices: {device_bundles}.")
|
|
else:
|
|
logger.info("No current placement group found. "
|
|
"Creating a new placement group.")
|
|
num_devices_in_cluster = ray.cluster_resources().get(device_str, 0)
|
|
# Log a warning message and delay resource allocation failure response.
|
|
# Avoid immediate rejection to allow user-initiated placement group
|
|
# created and wait cluster to be ready
|
|
if parallel_config.world_size > num_devices_in_cluster:
|
|
logger.warning(
|
|
"The number of required %ss exceeds the total "
|
|
"number of available %ss in the placement group.", device_str,
|
|
device_str)
|
|
# Create a new placement group
|
|
placement_group_specs: List[Dict[str, float]] = ([{
|
|
device_str: 1.0
|
|
} for _ in range(parallel_config.world_size)])
|
|
|
|
# vLLM engine is also a worker to execute model with an accelerator,
|
|
# so it requires to have the device in a current node. Check if
|
|
# the current node has at least one device.
|
|
current_ip = get_ip()
|
|
current_node_id = ray.get_runtime_context().get_node_id()
|
|
current_node_resource = available_resources_per_node()[current_node_id]
|
|
if current_node_resource.get(device_str, 0) < 1:
|
|
raise ValueError(
|
|
f"Current node has no {device_str} available. "
|
|
f"{current_node_resource=}. vLLM engine cannot start without "
|
|
f"{device_str}. Make sure you have at least 1 {device_str} "
|
|
f"available in a node {current_node_id=} {current_ip=}.")
|
|
# This way, at least bundle is required to be created in a current
|
|
# node.
|
|
placement_group_specs[0][f"node:{current_ip}"] = 0.001
|
|
|
|
# By default, Ray packs resources as much as possible.
|
|
current_placement_group = ray.util.placement_group(
|
|
placement_group_specs, strategy="PACK")
|
|
_wait_until_pg_ready(current_placement_group)
|
|
|
|
assert current_placement_group is not None
|
|
_verify_bundles(current_placement_group, parallel_config, device_str)
|
|
# Set the placement group in the parallel config
|
|
parallel_config.placement_group = current_placement_group
|
|
|
|
|
|
def get_num_tpu_nodes() -> int:
|
|
from ray._private.accelerators import TPUAcceleratorManager
|
|
cluster_resources = ray.cluster_resources()
|
|
total_tpus = int(cluster_resources["TPU"])
|
|
tpus_per_node = TPUAcceleratorManager.get_current_node_num_accelerators()
|
|
assert total_tpus % tpus_per_node == 0
|
|
return total_tpus // tpus_per_node
|
|
|
|
|
|
def get_num_nodes_in_placement_group() -> int:
|
|
pg_table = ray.util.placement_group_table()
|
|
current_pg = ray.util.get_current_placement_group()
|
|
num_nodes = 0
|
|
|
|
if current_pg:
|
|
nodes_in_pg = set()
|
|
for pg_key, pg in pg_table.items():
|
|
if pg_key == current_pg.id.hex():
|
|
for _, node in pg["bundles_to_node_id"].items():
|
|
nodes_in_pg.add(node)
|
|
num_nodes = len(nodes_in_pg)
|
|
|
|
return num_nodes
|