Files
vllm-dev/tests/tensorizer_loader/test_tensorizer.py

530 lines
17 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import gc
import json
import os
import pathlib
import subprocess
import sys
from typing import Any
import pytest
import torch
import vllm.model_executor.model_loader.tensorizer
from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
# yapf: disable
from vllm.model_executor.model_loader.tensorizer import (TensorizerConfig,
TensorSerializer,
is_vllm_tensorized,
open_stream,
tensorize_vllm_model)
from vllm.model_executor.model_loader.tensorizer_loader import (
BLACKLISTED_TENSORIZER_ARGS)
# yapf: enable
from vllm.utils import PlaceholderModule
from ..utils import VLLM_PATH, RemoteOpenAIServer
from .conftest import DummyExecutor, assert_from_collective_rpc
try:
import tensorizer
from tensorizer import EncryptionParams
except ImportError:
tensorizer = PlaceholderModule("tensorizer") # type: ignore[assignment]
EncryptionParams = tensorizer.placeholder_attr("EncryptionParams")
class TensorizerCaughtError(Exception):
pass
EXAMPLES_PATH = VLLM_PATH / "examples"
pytest_plugins = "pytest_asyncio",
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, seed=0)
def patch_init_and_catch_error(self, obj, method_name,
expected_error: type[Exception]):
original = getattr(obj, method_name, None)
if original is None:
raise ValueError("Method '{}' not found.".format(method_name))
def wrapper(*args, **kwargs):
try:
return original(*args, **kwargs)
except expected_error as err:
raise TensorizerCaughtError from err
setattr(obj, method_name, wrapper)
self.load_model()
def assert_specific_tensorizer_error_is_raised(
executor,
obj: Any,
method_name: str,
expected_error: type[Exception],
):
with pytest.raises(TensorizerCaughtError):
executor.collective_rpc(patch_init_and_catch_error,
args=(
obj,
method_name,
expected_error,
))
def is_curl_installed():
try:
subprocess.check_call(['curl', '--version'])
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
def write_keyfile(keyfile_path: str):
encryption_params = EncryptionParams.random()
pathlib.Path(keyfile_path).parent.mkdir(parents=True, exist_ok=True)
with open(keyfile_path, 'wb') as f:
f.write(encryption_params.key)
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
def test_deserialized_encrypted_vllm_model_has_same_outputs(
model_ref, vllm_runner, tmp_path, model_path):
args = EngineArgs(model=model_ref)
with vllm_runner(model_ref) as vllm_model:
key_path = tmp_path / model_ref / "model.key"
write_keyfile(key_path)
outputs = vllm_model.generate(prompts, sampling_params)
config_for_serializing = TensorizerConfig(tensorizer_uri=str(model_path),
encryption_keyfile=str(key_path))
tensorize_vllm_model(args, config_for_serializing)
config_for_deserializing = TensorizerConfig(
tensorizer_uri=str(model_path), encryption_keyfile=str(key_path))
with vllm_runner(model_ref,
load_format="tensorizer",
model_loader_extra_config=config_for_deserializing
) as loaded_vllm_model: # noqa: E501
deserialized_outputs = loaded_vllm_model.generate(
prompts, sampling_params)
# noqa: E501
assert outputs == deserialized_outputs
def test_deserialized_hf_model_has_same_outputs(hf_runner, vllm_runner,
tmp_path, model_ref,
model_path):
with hf_runner(model_ref) as hf_model:
max_tokens = 50
outputs = hf_model.generate_greedy(prompts, max_tokens=max_tokens)
with open_stream(model_path, "wb+") as stream:
serializer = TensorSerializer(stream)
serializer.write_module(hf_model.model)
with vllm_runner(model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=str(model_path),
num_readers=1,
)) as loaded_hf_model:
deserialized_outputs = loaded_hf_model.generate_greedy(
prompts, max_tokens=max_tokens)
assert outputs == deserialized_outputs
def test_load_without_tensorizer_load_format(vllm_runner, capfd, model_ref):
model = None
try:
model = vllm_runner(
model_ref,
model_loader_extra_config=TensorizerConfig(tensorizer_uri="test"))
except RuntimeError:
out, err = capfd.readouterr()
combined_output = out + err
assert ("ValueError: Model loader extra config "
"is not supported for load "
"format auto") in combined_output
finally:
del model
gc.collect()
torch.cuda.empty_cache()
def test_raise_value_error_on_invalid_load_format(vllm_runner, capfd,
model_ref):
model = None
try:
model = vllm_runner(
model_ref,
load_format="safetensors",
model_loader_extra_config=TensorizerConfig(tensorizer_uri="test"))
except RuntimeError:
out, err = capfd.readouterr()
combined_output = out + err
assert ("ValueError: Model loader extra config is not supported "
"for load format safetensors") in combined_output
finally:
del model
gc.collect()
torch.cuda.empty_cache()
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Requires 2 GPUs")
def test_tensorizer_with_tp_path_without_template(vllm_runner, capfd):
try:
model_ref = "EleutherAI/pythia-1.4b"
tensorized_path = f"s3://tensorized/{model_ref}/fp16/model.tensors"
vllm_runner(
model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=tensorized_path,
num_readers=1,
s3_endpoint="object.ord1.coreweave.com",
),
tensor_parallel_size=2,
disable_custom_all_reduce=True,
)
except RuntimeError:
out, err = capfd.readouterr()
combined_output = out + err
assert ("ValueError: For a sharded model, tensorizer_uri "
"should include a string format template like '%04d' "
"to be formatted with the rank "
"of the shard") in combined_output
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Requires 2 GPUs")
def test_deserialized_encrypted_vllm_model_with_tp_has_same_outputs(
vllm_runner, tmp_path):
model_ref = "EleutherAI/pythia-1.4b"
# record outputs from un-sharded un-tensorized model
with vllm_runner(
model_ref,
disable_custom_all_reduce=True,
enforce_eager=True,
) as base_model:
outputs = base_model.generate(prompts, sampling_params)
# load model with two shards and serialize with encryption
model_path = str(tmp_path / model_ref / "model-%02d.tensors")
key_path = tmp_path / (model_ref + ".key")
tensorizer_config = TensorizerConfig(
tensorizer_uri=model_path,
encryption_keyfile=str(key_path),
)
tensorize_vllm_model(
engine_args=EngineArgs(
model=model_ref,
tensor_parallel_size=2,
disable_custom_all_reduce=True,
enforce_eager=True,
),
tensorizer_config=tensorizer_config,
)
assert os.path.isfile(model_path % 0), "Serialization subprocess failed"
assert os.path.isfile(model_path % 1), "Serialization subprocess failed"
with vllm_runner(
model_ref,
tensor_parallel_size=2,
load_format="tensorizer",
disable_custom_all_reduce=True,
enforce_eager=True,
model_loader_extra_config=tensorizer_config) as loaded_vllm_model:
deserialized_outputs = loaded_vllm_model.generate(
prompts, sampling_params)
assert outputs == deserialized_outputs
@pytest.mark.flaky(reruns=3)
def test_vllm_tensorized_model_has_same_outputs(model_ref, vllm_runner,
tmp_path, model_path):
gc.collect()
torch.cuda.empty_cache()
config = TensorizerConfig(tensorizer_uri=str(model_path))
args = EngineArgs(model=model_ref)
with vllm_runner(model_ref) as vllm_model:
outputs = vllm_model.generate(prompts, sampling_params)
tensorize_vllm_model(args, config)
assert is_vllm_tensorized(config)
with vllm_runner(model_ref,
load_format="tensorizer",
model_loader_extra_config=config) as loaded_vllm_model:
deserialized_outputs = loaded_vllm_model.generate(
prompts, sampling_params)
# noqa: E501
assert outputs == deserialized_outputs
def test_load_with_just_model_tensors(just_serialize_model_tensors, model_ref):
# For backwards compatibility, ensure Tensorizer can be still be loaded
# for inference by passing the model reference name, not a local/S3 dir,
# and the location of the model tensors
model_dir = just_serialize_model_tensors
extra_config = {"tensorizer_uri": f"{model_dir}/model.tensors"}
## Start OpenAI API server
args = [
"--load-format",
"tensorizer",
"--model-loader-extra-config",
json.dumps(extra_config),
]
with RemoteOpenAIServer(model_ref, args):
# This test only concerns itself with being able to load the model
# and successfully initialize the server
pass
def test_assert_serialization_kwargs_passed_to_tensor_serializer(tmp_path):
serialization_params = {
"limit_cpu_concurrency": 2,
}
model_ref = "facebook/opt-125m"
model_path = tmp_path / (model_ref + ".tensors")
config = TensorizerConfig(tensorizer_uri=str(model_path),
serialization_kwargs=serialization_params)
llm = LLM(model=model_ref, )
def serialization_test(self, *args, **kwargs):
# This is performed in the ephemeral worker process, so monkey-patching
# will actually work, and cleanup is guaranteed so don't
# need to reset things
original_dict = serialization_params
to_compare = {}
original = tensorizer.serialization.TensorSerializer.__init__
def tensorizer_serializer_wrapper(self, *args, **kwargs):
nonlocal to_compare
to_compare = kwargs.copy()
return original(self, *args, **kwargs)
tensorizer.serialization.TensorSerializer.__init__ = (
tensorizer_serializer_wrapper)
tensorizer_config = TensorizerConfig(**kwargs["tensorizer_config"])
self.save_tensorized_model(tensorizer_config=tensorizer_config, )
return to_compare | original_dict == to_compare
kwargs = {"tensorizer_config": config.to_serializable()}
assert assert_from_collective_rpc(llm, serialization_test, kwargs)
def test_assert_deserialization_kwargs_passed_to_tensor_deserializer(
tmp_path, capfd):
deserialization_kwargs = {
"num_readers": "bar", # illegal value
}
serialization_params = {
"limit_cpu_concurrency": 2,
}
model_ref = "facebook/opt-125m"
model_path = tmp_path / (model_ref + ".tensors")
config = TensorizerConfig(tensorizer_uri=str(model_path),
serialization_kwargs=serialization_params)
args = EngineArgs(model=model_ref)
tensorize_vllm_model(args, config)
loader_tc = TensorizerConfig(
tensorizer_uri=str(model_path),
deserialization_kwargs=deserialization_kwargs,
)
engine_args = EngineArgs(
model="facebook/opt-125m",
load_format="tensorizer",
model_loader_extra_config=loader_tc.to_serializable(),
)
vllm_config = engine_args.create_engine_config()
executor = DummyExecutor(vllm_config)
assert_specific_tensorizer_error_is_raised(
executor,
tensorizer.serialization.TensorDeserializer,
"__init__",
TypeError,
)
def test_assert_stream_kwargs_passed_to_tensor_deserializer(tmp_path, capfd):
deserialization_kwargs = {
"num_readers": 1,
}
serialization_params = {
"limit_cpu_concurrency": 2,
}
model_ref = "facebook/opt-125m"
model_path = tmp_path / (model_ref + ".tensors")
config = TensorizerConfig(tensorizer_uri=str(model_path),
serialization_kwargs=serialization_params)
args = EngineArgs(model=model_ref)
tensorize_vllm_model(args, config)
stream_kwargs = {"mode": "foo"}
loader_tc = TensorizerConfig(
tensorizer_uri=str(model_path),
deserialization_kwargs=deserialization_kwargs,
stream_kwargs=stream_kwargs,
)
engine_args = EngineArgs(
model="facebook/opt-125m",
load_format="tensorizer",
model_loader_extra_config=loader_tc.to_serializable(),
)
vllm_config = engine_args.create_engine_config()
executor = DummyExecutor(vllm_config)
assert_specific_tensorizer_error_is_raised(
executor,
vllm.model_executor.model_loader.tensorizer,
"open_stream",
ValueError,
)
@pytest.mark.asyncio
async def test_serialize_and_serve_entrypoints(tmp_path):
model_ref = "facebook/opt-125m"
suffix = "test"
try:
result = subprocess.run([
sys.executable,
f"{VLLM_PATH}/examples/others/tensorize_vllm_model.py", "--model",
model_ref, "serialize", "--serialized-directory",
str(tmp_path), "--suffix", suffix, "--serialization-kwargs",
'{"limit_cpu_concurrency": 4}'
],
check=True,
capture_output=True,
text=True)
except subprocess.CalledProcessError as e:
print("Tensorizing failed.")
print("STDOUT:\n", e.stdout)
print("STDERR:\n", e.stderr)
raise
assert "Successfully serialized" in result.stdout
# Next, try to serve with vllm serve
model_uri = tmp_path / "vllm" / model_ref / suffix / "model.tensors"
model_loader_extra_config = {
"tensorizer_uri": str(model_uri),
"stream_kwargs": {
"force_http": False,
},
"deserialization_kwargs": {
"verify_hash": True,
"num_readers": 8,
}
}
cmd = [
"-m", "vllm.entrypoints.cli.main", "serve", "--host", "localhost",
"--load-format", "tensorizer", model_ref,
"--model-loader-extra-config",
json.dumps(model_loader_extra_config, indent=2)
]
proc = await asyncio.create_subprocess_exec(
sys.executable,
*cmd,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.STDOUT,
)
assert proc.stdout is not None
fut = proc.stdout.readuntil(b"Application startup complete.")
try:
await asyncio.wait_for(fut, 180)
except asyncio.TimeoutError:
pytest.fail("Server did not start successfully")
finally:
proc.terminate()
await proc.communicate()
@pytest.mark.parametrize("illegal_value", BLACKLISTED_TENSORIZER_ARGS)
def test_blacklisted_parameter_for_loading(tmp_path, vllm_runner, capfd,
illegal_value):
serialization_params = {
"limit_cpu_concurrency": 2,
}
model_ref = "facebook/opt-125m"
model_path = tmp_path / (model_ref + ".tensors")
config = TensorizerConfig(tensorizer_uri=str(model_path),
serialization_kwargs=serialization_params)
args = EngineArgs(model=model_ref)
tensorize_vllm_model(args, config)
loader_tc = {"tensorizer_uri": str(model_path), illegal_value: "foo"}
try:
vllm_runner(
model_ref,
load_format="tensorizer",
model_loader_extra_config=loader_tc,
)
except RuntimeError:
out, err = capfd.readouterr()
combined_output = out + err
assert (f"ValueError: {illegal_value} is not an allowed "
f"Tensorizer argument.") in combined_output