Files
vllm-dev/tests/test_test.py
Nicolò Lucchesi 5a16fa614c [Model] Gemma3n MM (#20495)
Signed-off-by: ShriKode <shrikode@gmail.com>
Signed-off-by: NickLucche <nlucches@redhat.com>
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: ShriKode <shrikode@gmail.com>
Co-authored-by: Roger Wang <hey@rogerw.me>
2025-08-09 09:56:25 -07:00

62 lines
2.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm import LLM, envs
from vllm.sampling_params import SamplingParams
if not envs.VLLM_USE_V1:
pytest.skip(
"Skipping V1 tests. Rerun with `VLLM_USE_V1=1` to test.",
allow_module_level=True,
)
@pytest.mark.parametrize("model_name", ["Qwen/Qwen2.5-1.5B-Instruct"])
# TODO TPU will appear busy if we fan-out test params here
@pytest.mark.parametrize("n_prompts", [1])
def test_logprobs(model_name: str, n_prompts: int):
"""
Request top logprobs with different sampling settings and check
that results contains the requested number, ordered ascendingly.
"""
def check_num_logprobs(logprobs, expected_num: int):
for step in logprobs:
prev_logp = 1.0
# order by rank
sorted_step = dict(
sorted(step.items(), key=lambda item: item[1].rank))
if len(step) != expected_num:
print("watch out", sorted_step)
# check results are ordered by prob value
# assert len(step) == expected_num
for rankno, (tid, logp) in enumerate(sorted_step.items()):
assert logp.logprob <= prev_logp
prev_logp = logp.logprob
assert logp.rank == rankno + 1
llm = LLM(model_name,
enforce_eager=False,
max_num_seqs=1,
max_model_len=128,
max_num_batched_tokens=128)
prompts = [
"Write a short story about a robot that dreams for the first time."
] * n_prompts
greedy_sampling_params = SamplingParams(temperature=0.0, max_tokens=64,\
logprobs=4)
regular_sampling_params = SamplingParams(temperature=0.4, max_tokens=64,\
logprobs=4)
topkp_sampling_params = SamplingParams(temperature=0.4, max_tokens=64,\
logprobs=4, top_k=12, top_p=0.5)
for sp in [greedy_sampling_params, regular_sampling_params, \
topkp_sampling_params]:
output = llm.generate(prompts, sp)
for o in output:
check_num_logprobs(o.outputs[0].logprobs, 4)