Signed-off-by: ShriKode <shrikode@gmail.com> Signed-off-by: NickLucche <nlucches@redhat.com> Signed-off-by: Roger Wang <hey@rogerw.me> Co-authored-by: ShriKode <shrikode@gmail.com> Co-authored-by: Roger Wang <hey@rogerw.me>
62 lines
2.1 KiB
Python
62 lines
2.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import pytest
|
|
|
|
from vllm import LLM, envs
|
|
from vllm.sampling_params import SamplingParams
|
|
|
|
if not envs.VLLM_USE_V1:
|
|
pytest.skip(
|
|
"Skipping V1 tests. Rerun with `VLLM_USE_V1=1` to test.",
|
|
allow_module_level=True,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("model_name", ["Qwen/Qwen2.5-1.5B-Instruct"])
|
|
# TODO TPU will appear busy if we fan-out test params here
|
|
@pytest.mark.parametrize("n_prompts", [1])
|
|
def test_logprobs(model_name: str, n_prompts: int):
|
|
"""
|
|
Request top logprobs with different sampling settings and check
|
|
that results contains the requested number, ordered ascendingly.
|
|
"""
|
|
|
|
def check_num_logprobs(logprobs, expected_num: int):
|
|
for step in logprobs:
|
|
prev_logp = 1.0
|
|
# order by rank
|
|
sorted_step = dict(
|
|
sorted(step.items(), key=lambda item: item[1].rank))
|
|
|
|
if len(step) != expected_num:
|
|
print("watch out", sorted_step)
|
|
|
|
# check results are ordered by prob value
|
|
# assert len(step) == expected_num
|
|
for rankno, (tid, logp) in enumerate(sorted_step.items()):
|
|
assert logp.logprob <= prev_logp
|
|
prev_logp = logp.logprob
|
|
assert logp.rank == rankno + 1
|
|
|
|
llm = LLM(model_name,
|
|
enforce_eager=False,
|
|
max_num_seqs=1,
|
|
max_model_len=128,
|
|
max_num_batched_tokens=128)
|
|
prompts = [
|
|
"Write a short story about a robot that dreams for the first time."
|
|
] * n_prompts
|
|
greedy_sampling_params = SamplingParams(temperature=0.0, max_tokens=64,\
|
|
logprobs=4)
|
|
regular_sampling_params = SamplingParams(temperature=0.4, max_tokens=64,\
|
|
logprobs=4)
|
|
topkp_sampling_params = SamplingParams(temperature=0.4, max_tokens=64,\
|
|
logprobs=4, top_k=12, top_p=0.5)
|
|
|
|
for sp in [greedy_sampling_params, regular_sampling_params, \
|
|
topkp_sampling_params]:
|
|
output = llm.generate(prompts, sp)
|
|
for o in output:
|
|
check_num_logprobs(o.outputs[0].logprobs, 4)
|