Files
vllm-dev/vllm/model_executor/layers/quantization/moe_wna16.py
Xin Yang 8fb85b7bb6 Add routed_scaling_factor to MoE grouped topk (#23123)
Signed-off-by: Xin Yang <xyangx@amazon.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-08-29 21:36:48 -07:00

474 lines
21 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Callable, Optional
import torch
from vllm.distributed import get_tensor_model_parallel_rank, get_tp_group
from vllm.model_executor.layers.fused_moe.layer import (
FusedMoE, FusedMoEConfig, FusedMoEMethodBase, FusedMoeWeightScaleSupported)
from vllm.model_executor.layers.linear import (LinearBase,
UnquantizedLinearMethod)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
check_marlin_supports_layer)
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
class MoeWNA16Config(QuantizationConfig):
"""Config class for MOE WNA16 (W8A16/W4A16) quantization."""
def __init__(self, linear_quant_method: str, weight_bits: int,
group_size: int, has_zp: bool, lm_head_quantized: bool,
modules_to_not_convert: Optional[list[str]],
full_config: dict[str, Any]) -> None:
super().__init__()
self.weight_bits = weight_bits
self.group_size = group_size
self.has_zp = has_zp
self.bit8_pack_factor = 8 // self.weight_bits
self.lm_head_quantized = lm_head_quantized
self.linear_quant_method = linear_quant_method
self.full_config = full_config
self.use_marlin = False
# Avoid circular import
from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.awq_marlin import (
AWQMarlinConfig)
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQMarlinConfig)
if self.linear_quant_method == "gptq":
self.use_marlin = GPTQMarlinConfig.is_gptq_marlin_compatible(
full_config)
elif self.linear_quant_method == "awq":
capability_tuple = current_platform.get_device_capability()
device_capability = (-1 if capability_tuple is None else
capability_tuple.to_int())
awq_min_capability = AWQConfig.get_min_capability()
if device_capability < awq_min_capability:
raise ValueError(
"The quantization method moe_wna16 + awq is not supported "
"for the current GPU. "
f"Minimum capability: {awq_min_capability}. "
f"Current capability: {device_capability}.")
self.use_marlin = AWQMarlinConfig.is_awq_marlin_compatible(
full_config)
else:
raise ValueError("moe_wna16 only support gptq and awq.")
if modules_to_not_convert is None:
self.modules_to_not_convert = []
else:
self.modules_to_not_convert = modules_to_not_convert
@classmethod
def get_name(cls) -> QuantizationMethods:
return "moe_wna16"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.bfloat16, torch.half]
@classmethod
def get_min_capability(cls) -> int:
return 70
@classmethod
def get_config_filenames(cls) -> list[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: dict[str, Any]) -> "MoeWNA16Config":
linear_quant_method = cls.get_from_keys(config, ["quant_method"])
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
default=False)
if linear_quant_method == "gptq":
has_zp = not cls.get_from_keys(config, ["sym"])
modules_to_not_convert = []
elif linear_quant_method == "awq":
has_zp = cls.get_from_keys(config, ["zero_point"])
modules_to_not_convert = cls.get_from_keys_or(
config, ["modules_to_not_convert"], None)
else:
raise ValueError("moe_wna16 only support gptq and awq.")
return cls(linear_quant_method, weight_bits, group_size, has_zp,
lm_head_quantized, modules_to_not_convert, config)
@classmethod
def override_quantization_method(
cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
can_convert = cls.is_moe_wna16_compatible(hf_quant_cfg)
if can_convert and user_quant == "moe_wna16":
return cls.get_name()
return None
@classmethod
def is_moe_wna16_compatible(cls, quant_config: dict[str, Any]):
# Extract data from quant config.
quant_method = quant_config.get("quant_method", "").lower()
num_bits = quant_config.get("bits")
desc_act = quant_config.get("desc_act")
capability_tuple = current_platform.get_device_capability()
device_capability = (-1 if capability_tuple is None else
capability_tuple.to_int())
# Avoid circular import
from vllm.model_executor.layers.quantization.awq import AWQConfig
awq_min_capability = AWQConfig.get_min_capability()
gptq_compatible = quant_method == "gptq" and \
not desc_act and num_bits in [4, 8]
awq_compatible = quant_method == "awq" and num_bits == 4 and \
device_capability >= awq_min_capability
return gptq_compatible or awq_compatible
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
if is_layer_skipped_quant(prefix, self.modules_to_not_convert):
return UnquantizedLinearMethod()
elif isinstance(layer, LinearBase):
# Avoid circular import
from vllm.model_executor.layers.quantization.awq import AWQConfig
from vllm.model_executor.layers.quantization.awq_marlin import (
AWQMarlinConfig)
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
from vllm.model_executor.layers.quantization.gptq_marlin import (
GPTQMarlinConfig)
if self.linear_quant_method == "gptq":
if self.use_marlin:
return GPTQMarlinConfig.from_config(
self.full_config).get_quant_method(layer, prefix)
else:
return GPTQConfig.from_config(
self.full_config).get_quant_method(layer, prefix)
elif self.linear_quant_method == "awq":
if self.use_marlin and check_marlin_supports_layer(
layer, self.group_size):
return AWQMarlinConfig.from_config(
self.full_config).get_quant_method(layer, prefix)
else:
return AWQConfig.from_config(
self.full_config).get_quant_method(layer, prefix)
else:
raise ValueError("moe_wna16 only support gptq and awq.")
elif isinstance(layer, FusedMoE):
return MoeWNA16Method(self, layer.moe_config)
return None
def is_layer_skipped_quant(prefix: str, modules_to_not_convert: list[str]):
return any(module_name in prefix for module_name in modules_to_not_convert)
class MoeWNA16Method(FusedMoEMethodBase):
"""Linear method for MOE WNA16 (W8A16/W4A16) quantization.
Args:
quant_config: The MOE WNA16 (W8A16/W4A16) quantization config.
"""
def __init__(self, quant_config: MoeWNA16Config,
moe: "FusedMoEConfig") -> None:
super().__init__(moe)
self.quant_config = quant_config
def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size_per_partition: int,
params_dtype: torch.dtype, **extra_weight_attrs):
self.moe = layer
layer.quant_config = self.quant_config
bit8_pack_factor = self.quant_config.bit8_pack_factor
group_size = self.quant_config.group_size
group_size_div_factor = 1
# make intermediate_size and hidden_size diviable by group_size
# we reduce the group size to ensure that
# and we would repeat the loaded_weight later
while intermediate_size_per_partition % group_size or \
hidden_size % group_size:
group_size = group_size // 2
group_size_div_factor *= 2
assert group_size >= 32
layer.group_size = group_size
layer.group_size_div_factor = group_size_div_factor
strategy = FusedMoeWeightScaleSupported.GROUP.value
extra_weight_attrs.update({
"quant_method": strategy,
"is_transposed": False
})
assert 'weight_loader' in extra_weight_attrs
weight_loader = extra_weight_attrs['weight_loader']
wrapped_weight_loader = MoeWNA16Method.get_weight_loader(
layer, weight_loader)
extra_weight_attrs['weight_loader'] = wrapped_weight_loader
# Fused gate_up_proj (column parallel)
w13_qweight = torch.nn.Parameter(torch.empty(
num_experts,
2 * intermediate_size_per_partition,
hidden_size // bit8_pack_factor,
dtype=torch.uint8),
requires_grad=False)
layer.register_parameter("w13_qweight", w13_qweight)
set_weight_attrs(w13_qweight, extra_weight_attrs)
# down_proj (row parallel)
w2_qweight = torch.nn.Parameter(torch.empty(
num_experts,
hidden_size,
intermediate_size_per_partition // bit8_pack_factor,
dtype=torch.uint8),
requires_grad=False)
layer.register_parameter("w2_qweight", w2_qweight)
set_weight_attrs(w2_qweight, extra_weight_attrs)
w13_scales = torch.nn.Parameter(torch.zeros(
num_experts,
2 * intermediate_size_per_partition,
hidden_size // group_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w13_scales", w13_scales)
set_weight_attrs(w13_scales, extra_weight_attrs)
w2_scales = torch.nn.Parameter(torch.zeros(
num_experts,
hidden_size,
intermediate_size_per_partition // group_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w2_scales", w2_scales)
set_weight_attrs(w2_scales, extra_weight_attrs)
if self.quant_config.has_zp:
w13_qzeros = torch.nn.Parameter(torch.zeros(
num_experts,
2 * intermediate_size_per_partition // bit8_pack_factor,
hidden_size // group_size,
dtype=torch.uint8),
requires_grad=False)
layer.register_parameter("w13_qzeros", w13_qzeros)
set_weight_attrs(w13_qzeros, extra_weight_attrs)
w2_qzeros = torch.nn.Parameter(torch.zeros(
num_experts,
hidden_size // bit8_pack_factor,
intermediate_size_per_partition // group_size,
dtype=torch.uint8),
requires_grad=False)
layer.register_parameter("w2_qzeros", w2_qzeros)
set_weight_attrs(w2_qzeros, extra_weight_attrs)
if self.quant_config.linear_quant_method == "gptq":
# some param are unused, but we need to init them in order to
# load weights
invalid_param_keys = ["w13_g_idx", "w2_g_idx"]
if not self.quant_config.has_zp:
invalid_param_keys += ["w13_qzeros", "w2_qzeros"]
for key in invalid_param_keys:
param = torch.nn.Parameter(torch.empty((0, ),
dtype=torch.int32),
requires_grad=False)
layer.register_parameter(key, param)
set_weight_attrs(param, extra_weight_attrs)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> torch.Tensor:
assert self.fused_experts is None
if enable_eplb:
raise NotImplementedError(
"EPLB not supported for `MoeWNA16Method` yet.")
from vllm.model_executor.layers.fused_moe import fused_experts
assert activation == "silu", "Only SiLU activation is supported."
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
indices_type=self.topk_indices_dtype)
weight_bits = self.quant_config.weight_bits
has_zp = self.quant_config.has_zp
return fused_experts(
x,
layer.w13_qweight,
layer.w2_qweight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
use_int4_w4a16=weight_bits == 4,
use_int8_w8a16=weight_bits == 8,
global_num_experts=global_num_experts,
apply_router_weight_on_input=apply_router_weight_on_input,
expert_map=expert_map,
w1_scale=layer.w13_scales,
w2_scale=layer.w2_scales,
w1_zp=layer.w13_qzeros if has_zp else None,
w2_zp=layer.w2_qzeros if has_zp else None,
block_shape=[0, layer.group_size])
@staticmethod
def get_weight_loader(layer, weight_loader):
def convert_awq_tensor(tensor, tensor_type):
# convert awq qweight/qzeros to a standard format (assume int4)
# qweight: (k, n // pack_factor_bit32) -> (n, k // pack_factor_bit8)
# qzeros: (k // group_size, n // pack_factor_bit32) ->
# (n // pack_factor_bit8, k // group_size)
# pack_factor_bit32 = 32 // weight_bits
# pack_factor_bit8 = 8 // weight_bits
# 0. suppose origin shape (a, b), dtype int32
# 1. convert to uint8, shape (a, b) -> (a, 4 * b)
size0 = tensor.size(0)
tensor = tensor.view(torch.uint8)
# 2. unpack to uint4 (only when weight_bits == 4)
# shape (a, 4 * b) -> (a, 4 * b, 2)
shifter = torch.tensor([0, 4],
dtype=torch.uint8,
device=tensor.device)
tensor = (tensor[:, :, None] >> shifter) & 0xF
# 3. change order, see
# https://github.com/casper-hansen/AutoAWQ/blob/v0.2.8/awq/utils/quant_utils.py
# shape -> (a, 4 * b * pack_factor_bit8)
reverse_awq_pack_order = [0, 4, 1, 5, 2, 6, 3, 7]
tensor = tensor.view(-1, 8)[:, reverse_awq_pack_order]
tensor = tensor.view(size0, -1)
# 4. transpose, shape -> (4 * b * pack_factor_bit8, a)
tensor = tensor.T.contiguous()
# 5. repack (only when weight_bits == 4)
# qweight shape -> (4 * b * pack_factor_bit8, a // pack_factor_bit8)
# qzeros shape -> (4 * b, a)
if tensor_type == "qweight":
tensor = tensor[:, 1::2] * 16 + tensor[:, ::2]
elif tensor_type == "qzeros":
tensor = tensor[1::2, :] * 16 + tensor[::2, :]
return tensor
def convert_gptq_int4_qzeros(tensor):
tensor = tensor.view(torch.uint8)
shifter = torch.tensor([0, 4],
dtype=torch.uint8,
device=tensor.device)
tensor = (tensor[:, :, None] >> shifter) & 0xF
tensor = tensor + 1
tensor = tensor[:, :, 0] + tensor[:, :, 1] * 16
return tensor
def moe_wna16_weight_loader(param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
weight_name: str,
shard_id: str,
expert_id: int,
return_success: bool = False):
if "g_idx" in weight_name:
return False if return_success else None
if not layer.quant_config.has_zp and "qzeros" in weight_name:
return False if return_success else None
device = get_tp_group().device
tp_rank = get_tensor_model_parallel_rank()
loaded_weight = loaded_weight.to(device)
shard_size = layer.intermediate_size_per_partition
# convert gptq and awq weight to a standard format
if layer.quant_config.linear_quant_method == "awq":
assert layer.quant_config.weight_bits == 4
if "weight" in weight_name:
loaded_weight = convert_awq_tensor(loaded_weight,
"qweight")
elif "zeros" in weight_name:
loaded_weight = convert_awq_tensor(loaded_weight, "qzeros")
else:
loaded_weight = loaded_weight.T
elif layer.quant_config.linear_quant_method == "gptq":
assert layer.quant_config.weight_bits in [4, 8]
if "weight" in weight_name:
loaded_weight = loaded_weight.T.contiguous().view(
torch.uint8)
elif "zeros" in weight_name:
# add 1 to gptq qzeros to align with awq
loaded_weight = loaded_weight.view(torch.uint8)
if layer.quant_config.weight_bits == 4:
loaded_weight = convert_gptq_int4_qzeros(
loaded_weight).T
else:
loaded_weight = loaded_weight.T + 1
else:
loaded_weight = loaded_weight.T
# repeat the qzeros/scales to fit new group size
if layer.group_size_div_factor > 1 and \
"qzeros" in weight_name or "scales" in weight_name:
loaded_weight = loaded_weight.repeat_interleave(
layer.group_size_div_factor, 1)
if "w13_qzeros" in weight_name:
tensor = loaded_weight.view(layer.tp_size, -1,
loaded_weight.size(1))[tp_rank]
if shard_id == "w1":
param.data[expert_id, :shard_size // 2] = tensor
else:
param.data[expert_id, shard_size // 2:] = tensor
return True if return_success else None
elif "w2_qzeros" in weight_name:
param.data[expert_id] = loaded_weight.view(
loaded_weight.size(0), layer.tp_size, -1)[:, tp_rank]
return True if return_success else None
else:
# Delegate to the original loader, passing return_success
return weight_loader(param,
loaded_weight,
weight_name,
shard_id,
expert_id,
return_success=return_success)
return moe_wna16_weight_loader