Files
vllm-dev/tests/entrypoints/llm/test_encode.py

88 lines
2.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import weakref
import pytest
from vllm import LLM, PoolingParams
from vllm.distributed import cleanup_dist_env_and_memory
MODEL_NAME = "intfloat/multilingual-e5-small"
PROMPTS = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
TOKEN_IDS = [
# Using ID={0, 1, 2, 3} results in NaN values,
# so we add this offset of 1000
[1000],
[1000, 1001],
[1000, 1002, 1001],
[1000, 1003, 1001, 1002],
]
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(model=MODEL_NAME,
max_num_batched_tokens=32768,
tensor_parallel_size=1,
gpu_memory_utilization=0.75,
enforce_eager=True,
seed=0)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
@pytest.mark.skip_global_cleanup
def test_multiple_pooling_params(llm: LLM):
pooling_params = [
PoolingParams(),
PoolingParams(),
PoolingParams(),
PoolingParams(),
]
# Multiple PoolingParams should be matched with each prompt
outputs = llm.encode(PROMPTS, pooling_params=pooling_params)
assert len(PROMPTS) == len(outputs)
# Exception raised, if the size of params does not match the size of prompts
with pytest.raises(ValueError):
outputs = llm.encode(PROMPTS, pooling_params=pooling_params[:3])
# Single PoolingParams should be applied to every prompt
single_pooling_params = PoolingParams()
outputs = llm.encode(PROMPTS, pooling_params=single_pooling_params)
assert len(PROMPTS) == len(outputs)
# pooling_params is None, default params should be applied
outputs = llm.encode(PROMPTS, pooling_params=None)
assert len(PROMPTS) == len(outputs)
@pytest.mark.skip_global_cleanup
def test_right_side_truncation(llm: LLM):
# Embeddings models should truncate the end of the prompt
tokenizer = llm.get_tokenizer()
assert tokenizer.truncation_side == "right"