88 lines
2.4 KiB
Python
88 lines
2.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import weakref
|
|
|
|
import pytest
|
|
|
|
from vllm import LLM, PoolingParams
|
|
from vllm.distributed import cleanup_dist_env_and_memory
|
|
|
|
MODEL_NAME = "intfloat/multilingual-e5-small"
|
|
|
|
PROMPTS = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
|
|
TOKEN_IDS = [
|
|
# Using ID={0, 1, 2, 3} results in NaN values,
|
|
# so we add this offset of 1000
|
|
[1000],
|
|
[1000, 1001],
|
|
[1000, 1002, 1001],
|
|
[1000, 1003, 1001, 1002],
|
|
]
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def v1(run_with_both_engines):
|
|
# Simple autouse wrapper to run both engines for each test
|
|
# This can be promoted up to conftest.py to run for every
|
|
# test in a package
|
|
pass
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def llm():
|
|
# pytest caches the fixture so we use weakref.proxy to
|
|
# enable garbage collection
|
|
llm = LLM(model=MODEL_NAME,
|
|
max_num_batched_tokens=32768,
|
|
tensor_parallel_size=1,
|
|
gpu_memory_utilization=0.75,
|
|
enforce_eager=True,
|
|
seed=0)
|
|
|
|
yield weakref.proxy(llm)
|
|
|
|
del llm
|
|
|
|
cleanup_dist_env_and_memory()
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_multiple_pooling_params(llm: LLM):
|
|
pooling_params = [
|
|
PoolingParams(),
|
|
PoolingParams(),
|
|
PoolingParams(),
|
|
PoolingParams(),
|
|
]
|
|
|
|
# Multiple PoolingParams should be matched with each prompt
|
|
outputs = llm.encode(PROMPTS, pooling_params=pooling_params)
|
|
assert len(PROMPTS) == len(outputs)
|
|
|
|
# Exception raised, if the size of params does not match the size of prompts
|
|
with pytest.raises(ValueError):
|
|
outputs = llm.encode(PROMPTS, pooling_params=pooling_params[:3])
|
|
|
|
# Single PoolingParams should be applied to every prompt
|
|
single_pooling_params = PoolingParams()
|
|
outputs = llm.encode(PROMPTS, pooling_params=single_pooling_params)
|
|
assert len(PROMPTS) == len(outputs)
|
|
|
|
# pooling_params is None, default params should be applied
|
|
outputs = llm.encode(PROMPTS, pooling_params=None)
|
|
assert len(PROMPTS) == len(outputs)
|
|
|
|
|
|
@pytest.mark.skip_global_cleanup
|
|
def test_right_side_truncation(llm: LLM):
|
|
# Embeddings models should truncate the end of the prompt
|
|
tokenizer = llm.get_tokenizer()
|
|
assert tokenizer.truncation_side == "right"
|