118 lines
4.1 KiB
Python
118 lines
4.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://huggingface.co/Qwen/Qwen2.5-Math-RM-72B/blob/main/modeling_qwen2_rm.py
|
|
# Copyright 2024 The Qwen team.
|
|
# Copyright 2023 The vLLM team.
|
|
"""Inference-only Qwen2-RM model compatible with HuggingFace weights."""
|
|
from collections.abc import Iterable
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.pooler import DispatchPooler, Pooler
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsLoRA, SupportsPP, default_pooling_type
|
|
from .qwen2 import Qwen2Model
|
|
from .utils import AutoWeightsLoader, maybe_prefix
|
|
|
|
|
|
class Qwen2RewardBaseModel(nn.Module, SupportsLoRA, SupportsPP):
|
|
|
|
is_pooling_model = True
|
|
pooler: Pooler
|
|
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
|
|
self.config = config
|
|
self.lora_config = lora_config
|
|
|
|
self.quant_config = quant_config
|
|
self.model = Qwen2Model(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "model"))
|
|
|
|
self.score = nn.Sequential(
|
|
ColumnParallelLinear(config.hidden_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
return_bias=False),
|
|
nn.ReLU(),
|
|
RowParallelLinear(config.hidden_size,
|
|
config.num_labels,
|
|
quant_config=quant_config,
|
|
return_bias=False),
|
|
)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
hidden_states = self.model(input_ids, positions, intermediate_tensors,
|
|
inputs_embeds)
|
|
logits = self.score(hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self,
|
|
ignore_unexpected_prefixes=["lm_head."])
|
|
return loader.load_weights(weights)
|
|
|
|
|
|
@default_pooling_type("ALL")
|
|
class Qwen2ForRewardModel(Qwen2RewardBaseModel):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
vllm_config.model_config.hf_config.num_labels = 1
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
pooler_config = vllm_config.model_config.pooler_config
|
|
assert pooler_config is not None
|
|
|
|
self.pooler = DispatchPooler(
|
|
{"encode": Pooler.for_encode(pooler_config)}, )
|
|
|
|
|
|
@default_pooling_type("STEP")
|
|
class Qwen2ForProcessRewardModel(Qwen2RewardBaseModel):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
vllm_config.model_config.hf_config.num_labels = 2
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
pooler_config = vllm_config.model_config.pooler_config
|
|
assert pooler_config is not None
|
|
|
|
self.pooler = DispatchPooler(
|
|
{"encode": Pooler.for_encode(pooler_config)})
|