Files
vllm-dev/tests/models/language/pooling/mteb_utils.py

312 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import tempfile
from collections.abc import Sequence
from typing import Optional
import mteb
import numpy as np
import pytest
import requests
from tests.models.utils import EmbedModelInfo, RerankModelInfo
# Most embedding models on the STS12 task (See #17175):
# - Model implementation and minor changes in tensor dtype
# results in differences less than 1e-4
# - Different model results in differences more than 1e-3
# 1e-4 is a good tolerance threshold
MTEB_EMBED_TASKS = ["STS12"]
MTEB_EMBED_TOL = 1e-4
# See #19344
MTEB_RERANK_TASKS = ["NFCorpus"]
MTEB_RERANK_LANGS = ["en"]
MTEB_RERANK_TOL = 2e-3
class VllmMtebEncoder(mteb.Encoder):
def __init__(self, vllm_model):
super().__init__()
self.llm = vllm_model
self.rng = np.random.default_rng(seed=42)
def encode(
self,
sentences: Sequence[str],
*args,
**kwargs,
) -> np.ndarray:
# Hoping to discover potential scheduling
# issues by randomizing the order.
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
outputs = self.llm.embed(sentences, use_tqdm=False)
embeds = np.array(outputs)
embeds = embeds[np.argsort(r)]
return embeds
def predict(
self,
sentences: list[tuple[str, str,
Optional[str]]], # query, corpus, prompt
*args,
**kwargs,
) -> np.ndarray:
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
queries = [s[0] for s in sentences]
corpus = [s[1] for s in sentences]
outputs = self.llm.score(queries,
corpus,
truncate_prompt_tokens=-1,
use_tqdm=False)
scores = np.array(outputs)
scores = scores[np.argsort(r)]
return scores
class OpenAIClientMtebEncoder(mteb.Encoder):
def __init__(self, model_name: str, client):
super().__init__()
self.model_name = model_name
self.client = client
self.rng = np.random.default_rng(seed=42)
def encode(self, sentences: Sequence[str], *args, **kwargs) -> np.ndarray:
# Hoping to discover potential scheduling
# issues by randomizing the order.
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
embeddings = self.client.embeddings.create(model=self.model_name,
input=sentences)
outputs = [d.embedding for d in embeddings.data]
embeds = np.array(outputs)
embeds = embeds[np.argsort(r)]
return embeds
class ScoreClientMtebEncoder(mteb.Encoder):
def __init__(self, model_name: str, url):
super().__init__()
self.model_name = model_name
self.url = url
self.rng = np.random.default_rng(seed=42)
def predict(
self,
sentences: list[tuple[str, str,
Optional[str]]], # query, corpus, prompt
*args,
**kwargs,
) -> np.ndarray:
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
outputs = []
for query, corpus, prompt in sentences:
outputs.append(self.get_score(query, corpus))
scores = np.array(outputs)
scores = scores[np.argsort(r)]
return scores
def get_score(self, query, corpus):
response = requests.post(self.url,
json={
"model": self.model_name,
"text_1": query,
"text_2": corpus,
"truncate_prompt_tokens": -1,
}).json()
return response['data'][0]["score"]
class RerankClientMtebEncoder(ScoreClientMtebEncoder):
def get_score(self, query, corpus):
response = requests.post(self.url,
json={
"model": self.model_name,
"query": query,
"documents": [corpus],
"truncate_prompt_tokens": -1,
}).json()
return response['results'][0]["relevance_score"]
def run_mteb_embed_task(encoder, tasks):
tasks = mteb.get_tasks(tasks=tasks)
evaluation = mteb.MTEB(tasks=tasks)
results = evaluation.run(
encoder,
verbosity=0,
output_folder=None,
encode_kwargs={
"show_progress_bar": False,
},
)
main_score = results[0].scores["test"][0]["main_score"]
return main_score
def mteb_test_embed_models(hf_runner,
vllm_runner,
model_info: EmbedModelInfo,
vllm_extra_kwargs=None,
hf_model_callback=None,
atol=MTEB_RERANK_TOL):
if not model_info.enable_test:
# A model family has many models with the same architecture,
# and we don't need to test each one.
pytest.skip("Skipping test.")
vllm_extra_kwargs = vllm_extra_kwargs or {}
vllm_extra_kwargs["dtype"] = model_info.dtype
with vllm_runner(model_info.name,
runner="pooling",
max_model_len=None,
**vllm_extra_kwargs) as vllm_model:
model_config = vllm_model.llm.llm_engine.model_config
if model_info.architecture:
assert model_info.architecture in model_config.architectures
assert (model_config._model_info.default_pooling_type ==
model_info.default_pooling_type)
vllm_main_score = run_mteb_embed_task(VllmMtebEncoder(vllm_model),
MTEB_EMBED_TASKS)
vllm_dtype = vllm_model.llm.llm_engine.model_config.dtype
with hf_runner(model_info.name,
is_sentence_transformer=True,
dtype="float32") as hf_model:
if hf_model_callback is not None:
hf_model_callback(hf_model)
st_main_score = run_mteb_embed_task(hf_model, MTEB_EMBED_TASKS)
st_dtype = next(hf_model.model.parameters()).dtype
print("VLLM:", vllm_dtype, vllm_main_score)
print("SentenceTransformers:", st_dtype, st_main_score)
print("Difference:", st_main_score - vllm_main_score)
assert st_main_score == pytest.approx(vllm_main_score, abs=atol)
def run_mteb_rerank(cross_encoder, tasks, languages):
with tempfile.TemporaryDirectory() as results_folder:
bm25s = mteb.get_model("bm25s")
tasks = mteb.get_tasks(tasks=tasks, languages=languages)
subset = "default"
eval_splits = ["test"]
evaluation = mteb.MTEB(tasks=tasks)
evaluation.run(
bm25s,
verbosity=0,
eval_splits=eval_splits,
save_predictions=True,
output_folder=f"{results_folder}/stage1",
encode_kwargs={"show_progress_bar": False},
)
results = evaluation.run(
cross_encoder,
verbosity=0,
eval_splits=eval_splits,
top_k=10,
save_predictions=True,
output_folder=f"{results_folder}/stage2",
previous_results=
f"{results_folder}/stage1/NFCorpus_{subset}_predictions.json",
encode_kwargs={"show_progress_bar": False},
)
main_score = results[0].scores["test"][0]["main_score"]
return main_score
def mteb_test_rerank_models_hf(hf_runner, model_name, hf_model_callback=None):
with hf_runner(model_name, is_cross_encoder=True,
dtype="float32") as hf_model:
original_predict = hf_model.predict
def _predict(
sentences: list[tuple[str, str,
Optional[str]]], # query, corpus, prompt
*args,
**kwargs,
):
# vllm and st both remove the prompt, fair comparison.
prompts = [(s[0], s[1]) for s in sentences]
return original_predict(prompts, *args, **kwargs, batch_size=8)
hf_model.predict = _predict
hf_model.original_predict = original_predict
if hf_model_callback is not None:
hf_model_callback(hf_model)
st_main_score = run_mteb_rerank(hf_model,
tasks=MTEB_RERANK_TASKS,
languages=MTEB_RERANK_LANGS)
st_dtype = next(hf_model.model.model.parameters()).dtype
return st_main_score, st_dtype
def mteb_test_rerank_models(hf_runner,
vllm_runner,
model_info: RerankModelInfo,
vllm_extra_kwargs=None,
hf_model_callback=None,
vllm_mteb_encoder=VllmMtebEncoder,
atol=MTEB_RERANK_TOL):
if not model_info.enable_test:
# A model family has many models with the same architecture,
# and we don't need to test each one.
pytest.skip("Skipping test.")
vllm_extra_kwargs = vllm_extra_kwargs or {}
vllm_extra_kwargs["dtype"] = model_info.dtype
with vllm_runner(model_info.name,
runner="pooling",
max_model_len=None,
max_num_seqs=8,
**vllm_extra_kwargs) as vllm_model:
model_config = vllm_model.llm.llm_engine.model_config
if model_info.architecture:
assert (model_info.architecture in model_config.architectures)
assert model_config.hf_config.num_labels == 1
assert (model_config._model_info.default_pooling_type ==
model_info.default_pooling_type)
vllm_main_score = run_mteb_rerank(vllm_mteb_encoder(vllm_model),
tasks=MTEB_RERANK_TASKS,
languages=MTEB_RERANK_LANGS)
vllm_dtype = model_config.dtype
st_main_score, st_dtype = mteb_test_rerank_models_hf(
hf_runner, model_info.name, hf_model_callback)
print("VLLM:", vllm_dtype, vllm_main_score)
print("SentenceTransformers:", st_dtype, st_main_score)
print("Difference:", st_main_score - vllm_main_score)
assert st_main_score == pytest.approx(vllm_main_score, abs=atol)