Files
vllm-dev/vllm/v1/structured_output/grammar.py
Aaron Pham 80e9afb5bc [V1][Core] Support for Structured Outputs (#12388)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-03-07 07:19:11 -08:00

78 lines
2.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations
import enum
from dataclasses import dataclass, field
from typing import TYPE_CHECKING
import torch
from vllm.logger import init_logger
from vllm.utils import LazyLoader
if TYPE_CHECKING:
import xgrammar as xgr
else:
xgr = LazyLoader("xgr", globals(), "xgrammar")
logger = init_logger(__name__)
class StructuredOutputOptions(enum.Enum):
JSON = enum.auto()
JSON_OBJECT = enum.auto()
REGEX = enum.auto()
GRAMMAR = enum.auto()
CHOICE = enum.auto()
StructuredOutputKey = tuple[StructuredOutputOptions, str]
@dataclass
class Grammar:
# NOTE: This would be a generic-enough class for
# supporting different backends, in the future.
# For now, just xgrammar.
#
# TODO: support max_rollback_tokens
# https://xgrammar.mlc.ai/docs/api/python/index.html#xgrammar.GrammarMatcher.find_jump_forward_string
# for jump-forward decoding
vocab_size: int
matcher: xgr.GrammarMatcher = field(hash=False)
ctx: xgr.CompiledGrammar = field(hash=False)
num_processed_tokens: int = field(default_factory=lambda: 0,
repr=False,
hash=False,
init=False)
def accept_tokens(self, request_id: str, tokens: list[int]) -> bool:
"""Accepts a list of tokens and advances the FSM.
Returns True if the FSM was advanced successfully.
Returns False if the FSM failed to advance.
"""
for token in tokens:
if not self.matcher.accept_token(token):
logger.error(
"Failed to advance FSM for request %s "
"for tokens %s. Please file an issue.", request_id, token)
return False
self.num_processed_tokens += 1
return True
def fill_bitmask(self, bitmask: torch.Tensor, idx: int) -> bool:
return self.matcher.fill_next_token_bitmask(bitmask, idx)
def reset(self):
self.num_processed_tokens = 0
self.matcher.reset()
def __copy__(self):
return Grammar(
matcher=xgr.GrammarMatcher(self.ctx),
vocab_size=self.vocab_size,
ctx=self.ctx,
)