Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com> Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk> Signed-off-by: Isotr0py <2037008807@qq.com> Signed-off-by: isotr0py <2037008807@qq.com> Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn> Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk> Co-authored-by: Isotr0py <2037008807@qq.com> Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn> Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
831 lines
33 KiB
Python
831 lines
33 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Copyright 2024 The vLLM team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Wrapper around `transformers` models"""
|
|
from collections.abc import Iterable, Mapping
|
|
from contextlib import contextmanager, nullcontext
|
|
from typing import Literal, Optional, Union
|
|
|
|
import regex as re
|
|
import torch
|
|
from torch import nn
|
|
from transformers import AutoModel, PretrainedConfig, PreTrainedModel
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import (CacheConfig, DeviceConfig, ModelConfig,
|
|
ParallelConfig, VllmConfig)
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
|
from vllm.distributed.utils import get_pp_indices
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
|
|
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
|
|
MultiModalInputs, PlaceholderRange)
|
|
from vllm.multimodal.parse import ImageProcessorItems, MultiModalDataItems
|
|
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
|
BaseProcessingInfo)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils import is_list_of
|
|
|
|
from .interfaces import (SupportsLoRA, SupportsMultiModal, SupportsPP,
|
|
SupportsQuant)
|
|
from .utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper,
|
|
flatten_bn, make_empty_intermediate_tensors_factory,
|
|
maybe_prefix)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
def vllm_flash_attention_forward(
|
|
# Transformers args
|
|
module: torch.nn.Module,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
# Transformers kwargs
|
|
scaling: Optional[float] = None,
|
|
# vLLM kwargs
|
|
attention_instances: Optional[dict[Attention]] = None,
|
|
**kwargs):
|
|
self_attn = attention_instances[module.layer_idx]
|
|
if scaling is not None:
|
|
self_attn.impl.scale = float(scaling)
|
|
hidden = query.shape[-2]
|
|
query, key, value = (x.transpose(1, 2) for x in (query, key, value))
|
|
query, key, value = (x.reshape(hidden, -1) for x in (query, key, value))
|
|
return self_attn.forward(query, key, value), None
|
|
|
|
|
|
ALL_ATTENTION_FUNCTIONS["vllm"] = vllm_flash_attention_forward
|
|
|
|
|
|
def log_replacement(name: str, old_module: nn.Module, new_module: nn.Module):
|
|
logger.debug("%s: %s -> %s", name, old_module, new_module)
|
|
|
|
|
|
def replace_linear_class(
|
|
linear: nn.Linear, style: Literal["colwise", "rowwise"],
|
|
quant_config: QuantizationConfig
|
|
) -> Union[ColumnParallelLinear, RowParallelLinear, ReplicatedLinear]:
|
|
"""
|
|
Replace nn.Linear with one of vLLM's tensor parallel linear classes.
|
|
|
|
Args:
|
|
linear (nn.Linear): `nn.Linear` to be replaced.
|
|
style (str): Tensor parallel style of the new linear, e.g. "colwise".
|
|
quant_config (QuantConfig): Quantization config for the new linear.
|
|
Returns:
|
|
Union[ColumnParallelLinear, RowParallelLinear]: The new linear.
|
|
"""
|
|
|
|
if not isinstance(style, str):
|
|
raise ValueError(
|
|
f"Unsupported parallel style type {type(style)}, expected str")
|
|
|
|
vllm_linear_cls = {
|
|
"colwise": ColumnParallelLinear,
|
|
"rowwise": RowParallelLinear,
|
|
}.get(style, ReplicatedLinear)
|
|
|
|
return vllm_linear_cls(
|
|
input_size=linear.in_features,
|
|
output_size=linear.out_features,
|
|
bias=linear.bias is not None,
|
|
quant_config=quant_config,
|
|
return_bias=False,
|
|
)
|
|
|
|
|
|
# Copied from `accelerate`
|
|
@contextmanager
|
|
def init_on_device_without_buffers(device: torch.device):
|
|
"""
|
|
A context manager under which models are initialized with all
|
|
parameters on the specified device. However buffers are not
|
|
initialized on specified device.
|
|
|
|
Args:
|
|
device (`torch.device`):
|
|
Device to initialize all parameters on.
|
|
"""
|
|
|
|
old_register_parameter = nn.Module.register_parameter
|
|
|
|
def register_empty_parameter(module, name, param):
|
|
old_register_parameter(module, name, param)
|
|
if param is not None:
|
|
param_cls = type(module._parameters[name])
|
|
kwargs = module._parameters[name].__dict__
|
|
kwargs["requires_grad"] = param.requires_grad
|
|
module._parameters[name] = param_cls(
|
|
module._parameters[name].to(device), **kwargs)
|
|
|
|
tensor_constructors_to_patch = {}
|
|
|
|
def patch_tensor_constructor(fn):
|
|
|
|
def wrapper(*args, **kwargs):
|
|
kwargs["device"] = device
|
|
return fn(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
try:
|
|
nn.Module.register_parameter = register_empty_parameter
|
|
for torch_function_name in tensor_constructors_to_patch:
|
|
setattr(
|
|
torch, torch_function_name,
|
|
patch_tensor_constructor(getattr(torch, torch_function_name)))
|
|
yield
|
|
finally:
|
|
nn.Module.register_parameter = old_register_parameter
|
|
for torch_function_name, old_torch_function in (
|
|
tensor_constructors_to_patch.items()):
|
|
setattr(torch, torch_function_name, old_torch_function)
|
|
|
|
|
|
class MultiModalProcessingInfo(BaseProcessingInfo):
|
|
|
|
def get_hf_config(self):
|
|
return self.ctx.model_config.hf_config
|
|
|
|
def get_supported_mm_limits(self):
|
|
return {"image": None}
|
|
|
|
def get_mm_max_tokens_per_item(self, seq_len, mm_counts):
|
|
return {"image": self.get_max_image_tokens()}
|
|
|
|
def get_max_image_tokens(self) -> int:
|
|
width, height = self.get_max_image_size()
|
|
processor = self.get_hf_processor()
|
|
mm_processor_kwargs = self.ctx.model_config.mm_processor_kwargs or {}
|
|
mm_tokens = processor._get_num_multimodal_tokens(
|
|
image_sizes=([height, width], ), **mm_processor_kwargs)
|
|
image_tokens = mm_tokens["num_image_tokens"][0]
|
|
return image_tokens
|
|
|
|
def get_max_image_size(self):
|
|
return 10_000, 10_000 # hardcode for arbitrary very large size
|
|
|
|
|
|
class MultiModalDummyInputsBuilder(
|
|
BaseDummyInputsBuilder[MultiModalProcessingInfo]):
|
|
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
processor = self.info.get_hf_processor()
|
|
if "gemma3" in processor.__class__.__name__.lower():
|
|
image_token = processor.boi_token
|
|
else:
|
|
image_token = getattr(processor, "image_token", "")
|
|
return image_token * num_images
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
target_width, target_height = self.info.get_max_image_size()
|
|
|
|
return {
|
|
"image":
|
|
self._get_dummy_images(width=target_width,
|
|
height=target_height,
|
|
num_images=num_images),
|
|
}
|
|
|
|
|
|
class MultiModalProcessor(BaseMultiModalProcessor[MultiModalProcessingInfo]):
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargs,
|
|
):
|
|
"""
|
|
Given the original multi-modal items for this modality
|
|
and HF-processed data, output the updates to perform.
|
|
|
|
The information returned by this method is used to update token inputs
|
|
which bypass the HF processor. It is also used to update the output of
|
|
HF processor if the HF process does not apply prompt updates to text
|
|
inputs.
|
|
|
|
Moreover, this information is critical to determine the token positions
|
|
in order to construct :class:`~vllm-multimodal.input.PlaceholderRange`
|
|
for each multi-modal item.
|
|
"""
|
|
return None
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs,
|
|
hf_processor_mm_kwargs,
|
|
num_image_patches: torch.Tensor = None,
|
|
):
|
|
# HF Processors always return a mask but vLLM doesn't need it
|
|
hf_inputs.pop("attention_mask", None)
|
|
mm_fields = {
|
|
key: MultiModalFieldConfig.flat_from_sizes("image",
|
|
num_image_patches)
|
|
for key in hf_inputs
|
|
}
|
|
mm_fields["image_embeds"] = MultiModalFieldConfig.flat_from_sizes(
|
|
"image", num_image_patches)
|
|
mm_fields["num_image_patches"] = MultiModalFieldConfig.batched("image")
|
|
return mm_fields
|
|
|
|
def _apply_hf_processor_text_mm(
|
|
self,
|
|
prompt_text: str,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
tokenization_kwargs: Mapping[str, object],
|
|
):
|
|
"""
|
|
Apply the HF processor on the prompt text and multi-modal data
|
|
together.
|
|
|
|
In addition, return whether prompt replacements have been applied.
|
|
"""
|
|
processor_data, passthrough_data = self._get_hf_mm_data(mm_items)
|
|
processor_data["return_mm_token_type_ids"] = True
|
|
|
|
processed_data = self._call_hf_processor(
|
|
prompt=prompt_text,
|
|
mm_data=processor_data,
|
|
mm_kwargs=hf_processor_mm_kwargs,
|
|
tok_kwargs=tokenization_kwargs,
|
|
)
|
|
processed_data.update(passthrough_data)
|
|
|
|
prompt_ids, = processed_data.pop("input_ids").tolist()
|
|
mm_token_type_ids = processed_data.pop(
|
|
"mm_token_type_ids"
|
|
) if "mm_token_type_ids" in processed_data else processed_data.pop(
|
|
"token_type_ids") # for gemma3 only
|
|
|
|
return prompt_ids, processed_data, mm_token_type_ids
|
|
|
|
def apply(
|
|
self,
|
|
prompt: Union[str, list[int]],
|
|
mm_data: MultiModalDataDict,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
tokenization_kwargs: Optional[Mapping[str, object]] = None,
|
|
return_mm_hashes: bool = False,
|
|
) -> MultiModalInputs:
|
|
"""
|
|
Process multi-modal inputs to be used in vLLM.
|
|
|
|
Apply HF Processor on prompt text and multi-modal data together,
|
|
outputting token IDs and processed tensors.
|
|
"""
|
|
if tokenization_kwargs is None:
|
|
tokenization_kwargs = {}
|
|
|
|
mm_items = self._to_mm_items(mm_data)
|
|
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
if not isinstance(prompt, str):
|
|
# the prompt is the tokenized ids which is not supported
|
|
# by the hf_processor, which is why we would need to decode the ids
|
|
# into string
|
|
prompt = hf_processor.decode(prompt)
|
|
|
|
(prompt_ids, processed_data,
|
|
mm_token_type_ids) = self._apply_hf_processor_text_mm(
|
|
prompt_text=prompt,
|
|
mm_items=mm_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
)
|
|
|
|
# HF processor will return `mm_token_type_ids` from which
|
|
# we can infer mm_placeholders. Until then hardcode to make code run
|
|
# Below tested on Llava. Prompts and `mm_token_type_ids` are always bs=1
|
|
mm_positions = torch.where(mm_token_type_ids == 1)[1]
|
|
images = mm_items.get_items("image", ImageProcessorItems)
|
|
mm_processor_kwargs = (self.info.ctx.model_config.mm_processor_kwargs
|
|
or {})
|
|
image_sizes = []
|
|
for item_idx in range(len(images)):
|
|
image_size = images.get_image_size(item_idx)
|
|
image_sizes.append((image_size.height, image_size.width))
|
|
|
|
mm_tokens_per_modality = hf_processor._get_num_multimodal_tokens(
|
|
image_sizes=image_sizes, **mm_processor_kwargs)
|
|
|
|
mm_placeholders = {}
|
|
split_sizes = mm_tokens_per_modality["num_image_tokens"]
|
|
if split_sizes:
|
|
chunked_mm_positions = torch.split(mm_positions, split_sizes)
|
|
mm_tokens = torch.tensor(prompt_ids)[mm_token_type_ids[0].bool()]
|
|
chunked_mm_tokens = torch.split(mm_tokens, split_sizes)
|
|
ranges = [
|
|
PlaceholderRange(
|
|
offset=positions[0].item(),
|
|
length=positions.shape[0],
|
|
is_embed=(mm_tokens == hf_processor.image_token_id).bool())
|
|
for positions, mm_tokens in zip(chunked_mm_positions,
|
|
chunked_mm_tokens)
|
|
]
|
|
mm_placeholders = {"image": ranges}
|
|
|
|
num_image_patches = torch.tensor(
|
|
mm_tokens_per_modality["num_image_patches"]
|
|
) if "num_image_patches" in mm_tokens_per_modality else None
|
|
processed_data['num_image_patches'] = num_image_patches
|
|
mm_kwargs = MultiModalKwargs.from_hf_inputs(
|
|
processed_data,
|
|
self._get_mm_fields_config(processed_data, hf_processor_mm_kwargs,
|
|
num_image_patches),
|
|
)
|
|
|
|
mm_hashes = self._hash_mm_items(mm_items, hf_processor_mm_kwargs,
|
|
tokenization_kwargs)
|
|
return MultiModalInputs(
|
|
type="multimodal",
|
|
prompt=prompt,
|
|
prompt_token_ids=prompt_ids,
|
|
mm_kwargs=mm_kwargs,
|
|
mm_hashes=mm_hashes,
|
|
mm_placeholders=mm_placeholders,
|
|
)
|
|
|
|
|
|
class ConfigOverride:
|
|
"""Context manager to temporarily override config attributes."""
|
|
|
|
def __init__(self, config: PretrainedConfig, **kwargs):
|
|
self.config = config
|
|
self.kwargs = kwargs
|
|
self.kwargs_original = {}
|
|
self.kwargs_delete = set()
|
|
|
|
def __enter__(self):
|
|
"""Override config attributes."""
|
|
for key, value in self.kwargs.items():
|
|
if not hasattr(self.config, key):
|
|
self.kwargs_delete.add(key)
|
|
self.kwargs_original[key] = getattr(self.config, key, None)
|
|
setattr(self.config, key, value)
|
|
return self.config
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
"""Restore original config attributes."""
|
|
for key, value in self.kwargs_original.items():
|
|
if key in self.kwargs_delete:
|
|
delattr(self.config, key)
|
|
else:
|
|
setattr(self.config, key, value)
|
|
|
|
|
|
class TransformersBase(nn.Module, SupportsQuant, SupportsLoRA, SupportsPP):
|
|
embedding_padding_modules = ["lm_head"]
|
|
embedding_modules = ["embed_tokens"
|
|
] # TODO transformers will have a util to get it
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
logger.info("Using Transformers backend.")
|
|
|
|
self.config: PretrainedConfig = vllm_config.model_config.hf_config
|
|
self.text_config: PretrainedConfig = self.config.get_text_config()
|
|
self.cache_config: CacheConfig = vllm_config.cache_config
|
|
self.device_config: DeviceConfig = vllm_config.device_config
|
|
self.model_config: ModelConfig = vllm_config.model_config
|
|
self.parallel_config: ParallelConfig = vllm_config.parallel_config
|
|
self.quant_config: QuantizationConfig = vllm_config.quant_config
|
|
|
|
self.pp_group = get_pp_group()
|
|
self.pp_size = self.pp_group.world_size
|
|
self.pp_rank = self.pp_group.rank_in_group
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
# To be updated in child classes for use in `load_weights`
|
|
self.skip_prefixes: Optional[list[str]] = None
|
|
|
|
# vLLM handles interleaved sliding window attention by creating a new
|
|
# interleaved_sliding_window attribute and deleting the sliding_window
|
|
# attribute. This breaks the constructors in Transformers so we
|
|
# temporarily add the attribute back to construct the model.
|
|
config_override = nullcontext()
|
|
if hasattr(self.config, "interleaved_sliding_window"):
|
|
config_override = ConfigOverride(
|
|
self.config,
|
|
sliding_window=self.config.interleaved_sliding_window)
|
|
|
|
# Set correct attn and init on "meta" to delay allocating GPU tensors
|
|
# TODO: @raushan, use the public `model.set_attn_implementation()`
|
|
# method once its checks are fixed in Transformers.
|
|
self.text_config._attn_implementation = "vllm"
|
|
with init_on_device_without_buffers("meta"), config_override:
|
|
self.model: PreTrainedModel = AutoModel.from_config(
|
|
self.config,
|
|
torch_dtype=self.model_config.dtype,
|
|
trust_remote_code=self.model_config.trust_remote_code,
|
|
)
|
|
|
|
self.pipeline_parallel()
|
|
self.tensor_parallel()
|
|
|
|
# Input embeddings
|
|
if not isinstance(self.model.get_input_embeddings(), PPMissingLayer):
|
|
self.model.set_input_embeddings(
|
|
VocabParallelEmbedding(
|
|
self.text_config.vocab_size,
|
|
self.text_config.hidden_size,
|
|
org_num_embeddings=self.text_config.vocab_size,
|
|
quant_config=self.quant_config,
|
|
))
|
|
|
|
# Attention layers
|
|
self.attention_instances = self.create_attention_instances()
|
|
|
|
# Initialize any parameters that have not had their modules replaced
|
|
self.init_parameters(self.model)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(
|
|
["hidden_states"], self.text_config.hidden_size))
|
|
|
|
def pipeline_parallel(self):
|
|
"""
|
|
Apply the model's pipeline parallelization plan.
|
|
"""
|
|
if self.pp_size <= 1:
|
|
return
|
|
|
|
if not self.model.supports_pp_plan:
|
|
raise ValueError(
|
|
f"{type(self.model)} does not support pipeline parallel yet!")
|
|
|
|
module_lists = []
|
|
module_list_idx = None
|
|
pp_plan = list(self.model._pp_plan.keys())
|
|
for i, name in enumerate(pp_plan):
|
|
if isinstance(getattr(self.model, name), nn.ModuleList):
|
|
module_lists.append(name)
|
|
module_list_idx = i
|
|
|
|
if len(module_lists) > 1:
|
|
raise ValueError(
|
|
"Pipeline parallel of models with multiple `ModuleList`s "
|
|
"in the base model are not supported yet!")
|
|
if module_list_idx is None:
|
|
raise ValueError(
|
|
f"Could not find `ModuleList` in {type(self.model)}")
|
|
|
|
# Layers before module list
|
|
for name in pp_plan[:module_list_idx]:
|
|
if self.pp_group.is_first_rank or (
|
|
self.text_config.tie_word_embeddings
|
|
and self.pp_group.is_last_rank):
|
|
continue
|
|
setattr(self.model, name, PPMissingLayer())
|
|
|
|
# Module list
|
|
start_layer, end_layer = get_pp_indices(
|
|
self.text_config.num_hidden_layers, self.pp_rank, self.pp_size)
|
|
layers_name = pp_plan[module_list_idx]
|
|
layers = getattr(self.model, layers_name)
|
|
for i in range(len(layers)):
|
|
if start_layer <= i and i < end_layer:
|
|
continue
|
|
layers[i] = PPMissingLayer()
|
|
|
|
# Layers after module list
|
|
for name in pp_plan[module_list_idx + 1:]:
|
|
# Modules that should be on last rank
|
|
if not self.pp_group.is_last_rank:
|
|
setattr(self.model, name, PPMissingLayer())
|
|
|
|
def tensor_parallel(self):
|
|
"""
|
|
Apply the model's tensor parallelization plan.
|
|
Currently only supports linear layers.
|
|
"""
|
|
tp_plan = getattr(self.model.config, "base_model_tp_plan", None) or {}
|
|
|
|
if not tp_plan and self.tp_size > 1:
|
|
raise ValueError(
|
|
f"{type(self.model)} does not support tensor parallel yet!")
|
|
|
|
# Some weight loaders expect linear layers to inherit from vLLM's
|
|
# LinearBase class, so we set a default style which causes any
|
|
# unspecified linear layers to be replaced with ReplicatedLinear
|
|
tp_plan[".*"] = "replicated"
|
|
|
|
def _tensor_parallel(module: nn.Module, prefix: str = ""):
|
|
for child_name, child_module in module.named_children():
|
|
qual_name = maybe_prefix(prefix, child_name)
|
|
for pattern, style in tp_plan.items():
|
|
if re.match(pattern, qual_name) and isinstance(
|
|
child_module, nn.Linear):
|
|
new_module = replace_linear_class(
|
|
child_module, style, self.quant_config)
|
|
setattr(module, child_name, new_module)
|
|
log_replacement(qual_name, child_module, new_module)
|
|
break
|
|
else:
|
|
_tensor_parallel(child_module, prefix=qual_name)
|
|
|
|
_tensor_parallel(self.model)
|
|
|
|
def create_attention_instances(self) -> dict[int, Attention]:
|
|
"""
|
|
Create `Attention` instances to inform KV cache allocation.
|
|
"""
|
|
num_heads = self.model_config.get_num_attention_heads(
|
|
self.parallel_config)
|
|
head_size = self.model_config.get_head_size()
|
|
num_kv_heads = self.model_config.get_num_kv_heads(self.parallel_config)
|
|
start, end = get_pp_indices(self.text_config.num_hidden_layers,
|
|
self.pp_rank, self.pp_size)
|
|
|
|
attention_instances = {}
|
|
for i in range(start, end):
|
|
# Handle interleaved sliding window attention
|
|
sliding_window = None
|
|
if (hasattr(self.config, "interleaved_sliding_window")
|
|
and hasattr(self.config, "sliding_window_pattern")
|
|
and ((i + 1) % self.config.sliding_window_pattern > 0)):
|
|
sliding_window = self.config.interleaved_sliding_window
|
|
|
|
attention_instances[i] = Attention(
|
|
num_heads=num_heads,
|
|
head_size=head_size,
|
|
# NOTE: We use Llama scale as default, if it's set by
|
|
# Transformers, it's updated in vllm_flash_attention_forward
|
|
scale=head_size**-0.5,
|
|
num_kv_heads=num_kv_heads,
|
|
cache_config=self.cache_config,
|
|
quant_config=self.quant_config,
|
|
per_layer_sliding_window=sliding_window,
|
|
prefix=f"{i}.attn")
|
|
return attention_instances
|
|
|
|
def init_parameters(self, module: nn.Module):
|
|
"""
|
|
If a `parameter` is on the `meta` device, then its parent
|
|
`module` is the original module created by:
|
|
|
|
```python
|
|
with torch.device("meta"):
|
|
self.model: PreTrainedModel = AutoModel.from_config(...)
|
|
```
|
|
"""
|
|
for name, param in module.named_parameters(recurse=False):
|
|
if param.device == torch.device("meta"):
|
|
new_param = nn.Parameter(
|
|
torch.empty_like(param.data,
|
|
dtype=self.model_config.dtype,
|
|
device=self.device_config.device))
|
|
setattr(module, name, new_param)
|
|
for child in module.children():
|
|
self.init_parameters(child)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor],
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if not get_pp_group().is_first_rank:
|
|
assert intermediate_tensors is not None
|
|
input_ids = None
|
|
inputs_embeds = intermediate_tensors["hidden_states"]
|
|
|
|
if input_ids is not None:
|
|
input_ids = input_ids[None, ...]
|
|
if inputs_embeds is not None:
|
|
inputs_embeds = inputs_embeds[None, ...]
|
|
|
|
if self.model_config.uses_mrope:
|
|
position_ids = positions[:, None]
|
|
else:
|
|
position_ids = positions[None, ...]
|
|
|
|
hidden_states = self.model(
|
|
input_ids=input_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=False,
|
|
position_ids=position_ids,
|
|
attention_instances=self.attention_instances,
|
|
return_dict=False)[0][0, ...] # we remove batch dimension for now
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self, skip_prefixes=self.skip_prefixes)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
|
|
|
|
@support_torch_compile
|
|
class TransformersModel(TransformersBase):
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
# Add `model.` prefix for base model checkpoints
|
|
"": "model.",
|
|
# Remove `model.` from places it should not be
|
|
"model.model.": "model.",
|
|
"model.score": "score",
|
|
})
|
|
|
|
|
|
@support_torch_compile
|
|
class TransformersForCausalLM(TransformersBase):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
# Tell `TransformersBase.load_weights` to skip
|
|
# `lm_head` if the model has tied word embeddings
|
|
if self.text_config.tie_word_embeddings:
|
|
self.skip_prefixes = ["lm_head."]
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.unpadded_vocab_size = self.text_config.vocab_size
|
|
self.lm_head = ParallelLMHead(
|
|
self.text_config.vocab_size,
|
|
self.text_config.hidden_size,
|
|
quant_config=self.quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
if self.text_config.tie_word_embeddings:
|
|
self.lm_head = self.lm_head.tie_weights(
|
|
self.model.get_input_embeddings())
|
|
|
|
logit_scale = getattr(self.text_config, "logit_scale", 1.0)
|
|
self.logits_processor = LogitsProcessor(
|
|
self.unpadded_vocab_size, self.text_config.vocab_size,
|
|
logit_scale)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
MultiModalProcessor,
|
|
info=MultiModalProcessingInfo,
|
|
dummy_inputs=MultiModalDummyInputsBuilder)
|
|
class TransformersForMultimodalLM(TransformersForCausalLM, SupportsMultiModal):
|
|
# Backwards compatibility for prev released models. State dicts back then
|
|
# had different formats and cannot be loaded with `AutoModel` mapping as is
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
"language_model.model": "model.language_model",
|
|
"text_model.model": "model.text_model",
|
|
"vision_tower": "model.vision_tower",
|
|
"vqmodel": "model.vqmodel",
|
|
"visual": "model.visual",
|
|
"vision_model": "model.vision_model",
|
|
"vision_embed_tokens": "model.vision_embed_tokens",
|
|
"image_newline": "model.image_newline",
|
|
"multi_modal_projector": "model.multi_modal_projector",
|
|
"text_model.lm_head": "lm_head",
|
|
"language_model.lm_head": "lm_head",
|
|
# Qwen models used "model" as the name for the language model.
|
|
# Therefore, we must map each of submodule explicitly to avoid
|
|
# conflicts with newer models that use "model.language_model".
|
|
"model.embed_tokens": "model.language_model.embed_tokens",
|
|
"model.layers": "model.language_model.layers",
|
|
"model.norm": "model.language_model.norm",
|
|
})
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
self.dtype = vllm_config.model_config.dtype
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor],
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs: object,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
# NOTE: In v1, inputs_embeds is always generated at model runner from
|
|
# `get_multimodal_embeddings` and `get_input_embeddings`, this
|
|
# condition is only for v0 compatibility.
|
|
if inputs_embeds is None:
|
|
multimodal_embeds = self.get_multimodal_embeddings(**kwargs)
|
|
if multimodal_embeds is not None:
|
|
inputs_embeds = self.get_input_embeddings(
|
|
input_ids, multimodal_embeds)
|
|
input_ids = None
|
|
|
|
model_output = super().forward(input_ids, positions,
|
|
intermediate_tensors, inputs_embeds)
|
|
return model_output
|
|
|
|
def get_multimodal_embeddings(self, **kwargs):
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
pixel_values = pixel_values if pixel_values is not None else kwargs.pop(
|
|
"image_patches", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
|
|
if image_embeds is not None:
|
|
return image_embeds
|
|
|
|
if pixel_values is None and image_embeds is None:
|
|
return None
|
|
|
|
num_image_patches = kwargs.pop("num_image_patches")
|
|
if pixel_values is not None:
|
|
if isinstance(pixel_values, torch.Tensor):
|
|
pixel_values = flatten_bn(pixel_values).to(self.dtype)
|
|
elif is_list_of(pixel_values, torch.Tensor):
|
|
pixel_values = flatten_bn(flatten_bn(pixel_values),
|
|
concat=True).to(self.dtype)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported pixel_values type {type(pixel_values)}. "
|
|
"Expected `torch.Tensor` or list of `torch.Tensor`.")
|
|
|
|
if isinstance(num_image_patches, list):
|
|
num_image_patches = torch.cat(num_image_patches)
|
|
|
|
vision_embeddings = self.model.get_image_features(
|
|
pixel_values,
|
|
**{
|
|
k: v.flatten(0, 1)
|
|
for k, v in kwargs.items()
|
|
},
|
|
)
|
|
|
|
if isinstance(vision_embeddings, torch.Tensor):
|
|
if vision_embeddings.ndim == 2:
|
|
vision_embeddings = vision_embeddings.unsqueeze(0)
|
|
|
|
# Embeddings have to be 2D tensors of length `num_images`
|
|
# but transformers returns concat tensors if each patch
|
|
# is of different size. We split it back to make vLLM happy
|
|
vision_embeddings = torch.split(
|
|
vision_embeddings,
|
|
num_image_patches.flatten().tolist())
|
|
vision_embeddings = [
|
|
embed.flatten(start_dim=0, end_dim=-2)
|
|
for embed in vision_embeddings
|
|
]
|
|
|
|
return vision_embeddings
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings=None,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.model.get_input_embeddings()(input_ids)
|
|
if (multimodal_embeddings is not None
|
|
and len(multimodal_embeddings) != 0):
|
|
mask = (input_ids == self.config.image_token_id)
|
|
mask = mask.unsqueeze(-1).expand_as(inputs_embeds)
|
|
multimodal_embeddings = torch.cat(multimodal_embeddings)
|
|
|
|
inputs_embeds = inputs_embeds.masked_scatter(
|
|
mask, multimodal_embeddings)
|
|
return inputs_embeds
|