Files
vllm-dev/vllm/inputs/preprocess.py
2025-08-30 18:01:22 -07:00

956 lines
35 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
from collections.abc import Mapping
from typing import Any, Optional, Union, cast
from typing_extensions import assert_never
from vllm.config import ModelConfig
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry
from vllm.multimodal.cache import BaseMultiModalProcessorCache
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalEncDecInputs,
MultiModalInputs, MultiModalUUIDDict)
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.transformers_utils.tokenizer_group import TokenizerGroup
from .data import (DecoderOnlyInputs, EmbedsInputs, EmbedsPrompt,
EncoderDecoderInputs, ProcessorInputs, PromptType,
SingletonInputs, SingletonPrompt, TextPrompt, TokenInputs,
TokensPrompt, embeds_inputs, token_inputs)
from .parse import is_explicit_encoder_decoder_prompt, parse_singleton_prompt
logger = init_logger(__name__)
class InputPreprocessor:
def __init__(
self,
model_config: ModelConfig,
tokenizer: Optional[TokenizerGroup],
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
mm_processor_cache: Optional[BaseMultiModalProcessorCache] = None,
) -> None:
super().__init__()
self.model_config = model_config
self.tokenizer = tokenizer
self.mm_registry = mm_registry
self.mm_processor_cache = mm_processor_cache
def get_tokenizer_group(self) -> TokenizerGroup:
if self.tokenizer is None:
raise ValueError("You cannot pass text prompts when "
"`skip_tokenizer_init` is True")
return self.tokenizer
def get_bos_token_id(self,
lora_request: Optional[LoRARequest] = None
) -> Optional[int]:
if self.tokenizer is None:
logger.warning("Using None for BOS token id because tokenizer "
"is not initialized")
return None
return self.tokenizer.get_lora_tokenizer(lora_request).bos_token_id
def get_eos_token_id(self,
lora_request: Optional[LoRARequest] = None
) -> Optional[int]:
if self.tokenizer is None:
logger.warning("Using None for EOS token id because tokenizer "
"is not initialized")
return None
return self.tokenizer.get_lora_tokenizer(lora_request).eos_token_id
def get_decoder_start_token_id(self) -> Optional[int]:
"""
Obtain the decoder start token id employed by an encoder/decoder
model. Returns None for non-encoder/decoder models or if the
model config is unavailable.
"""
if not self.model_config.is_encoder_decoder:
logger.warning_once(
"Using None for decoder start token id because "
"this is not an encoder/decoder model.")
return None
if self.model_config is None or self.model_config.hf_config is None:
logger.warning_once(
"Using None for decoder start token id because "
"model config is not available.")
return None
dec_start_token_id = getattr(self.model_config.hf_config,
"decoder_start_token_id", None)
if dec_start_token_id is None:
logger.warning_once(
"Falling back on <BOS> for decoder start token "
"id because decoder start token id is not "
"available.")
dec_start_token_id = self.get_bos_token_id()
return dec_start_token_id
def _get_default_enc_dec_decoder_prompt(self) -> list[int]:
"""
Specifically for encoder/decoder models:
generate a default decoder prompt for when
the user specifies only the encoder prompt.
Encoder/decoder models utilize the decoder
prompt in different ways; as new models are
added, it is intended that this function
will be extended to produce differing
default decoder prompts, depending on the
model variety.
Absent a special case, the default behavior
of this method is to mirror the behavior of
the HuggingFace (HF) GenerationMixin for a None
decoder prompt, which is to employ a logit processor
setting to force the first decoded token to be <BOS>.
Here, this behavior is approximated by having the
"default" decoder prompt be <BOS>.
However, it is possible that in the future
other models may have different or more
complex logic for the default decoder prompt.
This motivates having a special helper method
for default decoder prompts.
Returns:
* prompt_token_ids
"""
bos_token_id = self.get_bos_token_id()
assert bos_token_id is not None
return [bos_token_id]
def _prepare_decoder_input_ids_for_generation(
self,
decoder_input_ids: Optional[list[int]],
) -> list[int]:
"""
Prepares `decoder_input_ids` for generation with encoder-decoder models.
Based on:
https://github.com/huggingface/transformers/blob/4037a2b5b1278736e566aec12e169100275545ea/src/transformers/generation/utils.py
specifically,
`GenerationMixin._prepare_decoder_input_ids_for_generation()`.
Arguments:
* decoder_input_ids: input token ids to preprocess
Returns:
* Processed token list
"""
decoder_start_token_id = self.get_decoder_start_token_id()
assert decoder_start_token_id is not None
if decoder_input_ids is None:
# no decoder prompt input ->
# use decoder_start_token_id as decoder_input_ids
decoder_input_ids = self._get_default_enc_dec_decoder_prompt()
if (len(decoder_input_ids) == 0
or decoder_input_ids[0] != decoder_start_token_id):
decoder_input_ids = [decoder_start_token_id] + decoder_input_ids
return decoder_input_ids
def _get_tokenization_kw(
self,
overrides: Optional[dict[str, Any]] = None,
) -> dict[str, Any]:
kwargs = dict[str, Any]()
if self.model_config.hf_config.model_type == "whisper":
# For Whisper, special tokens should be provided by the user based
# on the task and language of their request. Also needed to avoid
# appending an EOS token to the prompt which disrupts generation.
kwargs["add_special_tokens"] = False
if overrides:
kwargs.update(overrides)
return kwargs
def _tokenize_prompt(
self,
prompt: str,
lora_request: Optional[LoRARequest],
tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> list[int]:
"""
Apply the model's tokenizer to a text prompt, returning the
corresponding token IDs.
"""
tokenizer = self.get_tokenizer_group()
tokenization_kwargs = self._get_tokenization_kw(tokenization_kwargs)
encoder_config = self.model_config.encoder_config
if encoder_config and encoder_config.get("do_lower_case", False):
prompt = prompt.lower()
return tokenizer.encode(prompt=prompt,
lora_request=lora_request,
**tokenization_kwargs)
async def _tokenize_prompt_async(
self,
prompt: str,
lora_request: Optional[LoRARequest],
tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> list[int]:
"""
Async version of
[`_tokenize_prompt`][vllm.inputs.preprocess.InputPreprocessor._tokenize_prompt].
"""
tokenizer = self.get_tokenizer_group()
tokenization_kwargs = self._get_tokenization_kw(tokenization_kwargs)
return await tokenizer.encode_async(prompt=prompt,
lora_request=lora_request,
**tokenization_kwargs)
def _get_mm_tokenizer(
self,
lora_request: Optional[LoRARequest],
) -> AnyTokenizer:
# PrithviGeoSpatialMAE needs to be initialized without a tokenizer
# while using also multi-modal input
if not self.tokenizer:
return cast(AnyTokenizer, object()) # Dummy
tokenizer_group = self.get_tokenizer_group()
return tokenizer_group.get_lora_tokenizer(lora_request)
async def _get_mm_tokenizer_async(
self,
lora_request: Optional[LoRARequest],
) -> AnyTokenizer:
# PrithviGeoSpatialMAE needs to be initialized without a tokenizer
# while using also multi-modal input
if not self.tokenizer:
return cast(AnyTokenizer, object()) # Dummy
tokenizer_group = self.get_tokenizer_group()
return await tokenizer_group.get_lora_tokenizer_async(lora_request)
def _process_multimodal(
self,
prompt: Union[str, list[int]],
mm_data: MultiModalDataDict,
mm_processor_kwargs: Optional[Mapping[str, object]],
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> MultiModalInputs:
"""
Apply the model's multi-modal processor to a multi-modal prompt,
returning the corresponding token IDs and metadata.
"""
tokenizer = self._get_mm_tokenizer(lora_request)
mm_processor = self.mm_registry.create_processor(
self.model_config,
tokenizer=tokenizer,
cache=self.mm_processor_cache,
)
if mm_processor_kwargs is None:
mm_processor_kwargs = {}
return mm_processor.apply(
prompt,
mm_data,
hf_processor_mm_kwargs=mm_processor_kwargs,
tokenization_kwargs=tokenization_kwargs,
mm_hash_overrides=mm_hash_overrides,
)
async def _process_multimodal_async(
self,
prompt: Union[str, list[int]],
mm_data: MultiModalDataDict,
mm_processor_kwargs: Optional[Mapping[str, object]],
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> MultiModalInputs:
"""
Async version of
[`_process_multimodal`][vllm.inputs.preprocess.InputPreprocessor._process_multimodal].
"""
tokenizer = await self._get_mm_tokenizer_async(lora_request)
mm_processor = self.mm_registry.create_processor(
self.model_config,
tokenizer=tokenizer,
cache=self.mm_processor_cache,
)
if mm_processor_kwargs is None:
mm_processor_kwargs = {}
return mm_processor.apply(
prompt,
mm_data,
hf_processor_mm_kwargs=mm_processor_kwargs,
tokenization_kwargs=tokenization_kwargs,
mm_hash_overrides=mm_hash_overrides,
)
def _process_embeds(
self,
parsed_content: EmbedsPrompt,
) -> EmbedsInputs:
if not self.model_config.enable_prompt_embeds:
raise ValueError("You must set `--enable-prompt-embeds` to input "
"`prompt_embeds`.")
prompt_embeds = parsed_content["prompt_embeds"]
# prompt_embeds must be (seq_len, hidden_size), but if the user
# passes in a batch of size 1, i.e. (1, seq_len, hidden_size),
# we can unambiguously process the intent by squeezing the batch
# dimension.
if prompt_embeds.ndim == 3:
prompt_embeds = prompt_embeds.squeeze(dim=0)
if prompt_embeds.ndim != 2:
raise ValueError(
"prompt_embeds must be of shape (seq_len, hidden_size).")
return embeds_inputs(prompt_embeds=prompt_embeds,
cache_salt=parsed_content.get("cache_salt"))
async def _process_embeds_async(
self,
parsed_content: EmbedsPrompt,
) -> EmbedsInputs:
return self._process_embeds(parsed_content)
def _truncate_inputs(
self,
inputs: list[int],
tokenization_kwargs: Optional[dict[str, Any]] = None) -> list[int]:
if not tokenization_kwargs or "truncation" not in \
tokenization_kwargs or self.tokenizer is None:
return inputs
max_length = tokenization_kwargs["max_length"]
if self.tokenizer.truncation_side == "left":
return inputs[-max_length:]
else:
return inputs[:max_length]
def _process_tokens(
self,
parsed_content: TokensPrompt,
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> Union[TokenInputs, MultiModalInputs]:
prompt_token_ids = self._truncate_inputs(
parsed_content["prompt_token_ids"], tokenization_kwargs)
inputs: Union[TokenInputs, MultiModalInputs]
if multi_modal_data := parsed_content.get("multi_modal_data"):
inputs = self._process_multimodal(
prompt_token_ids,
multi_modal_data,
parsed_content.get("mm_processor_kwargs"),
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
else:
inputs = token_inputs(prompt_token_ids=prompt_token_ids)
if cache_salt := parsed_content.get("cache_salt"):
inputs["cache_salt"] = cache_salt
return inputs
async def _process_tokens_async(
self,
parsed_content: TokensPrompt,
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> Union[TokenInputs, MultiModalInputs]:
prompt_token_ids = self._truncate_inputs(
parsed_content["prompt_token_ids"], tokenization_kwargs)
inputs: Union[TokenInputs, MultiModalInputs]
if multi_modal_data := parsed_content.get("multi_modal_data"):
inputs = await self._process_multimodal_async(
prompt_token_ids,
multi_modal_data,
parsed_content.get("mm_processor_kwargs"),
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
else:
inputs = token_inputs(prompt_token_ids=prompt_token_ids, )
if cache_salt := parsed_content.get("cache_salt"):
inputs["cache_salt"] = cache_salt
return inputs
def _process_text(
self,
parsed_content: TextPrompt,
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> Union[TokenInputs, MultiModalInputs]:
prompt_text = parsed_content["prompt"]
inputs: Union[TokenInputs, MultiModalInputs]
if multi_modal_data := parsed_content.get("multi_modal_data"):
inputs = self._process_multimodal(
prompt_text,
multi_modal_data,
parsed_content.get("mm_processor_kwargs"),
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
else:
prompt_token_ids = self._tokenize_prompt(
prompt_text,
lora_request=lora_request,
tokenization_kwargs=tokenization_kwargs,
)
inputs = token_inputs(
prompt=prompt_text,
prompt_token_ids=prompt_token_ids,
)
if cache_salt := parsed_content.get("cache_salt"):
inputs["cache_salt"] = cache_salt
return inputs
async def _process_text_async(
self,
parsed_content: TextPrompt,
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> Union[TokenInputs, MultiModalInputs]:
prompt_text = parsed_content["prompt"]
inputs: Union[TokenInputs, MultiModalInputs]
if multi_modal_data := parsed_content.get("multi_modal_data"):
inputs = await self._process_multimodal_async(
prompt_text,
multi_modal_data,
parsed_content.get("mm_processor_kwargs"),
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
else:
prompt_token_ids = await self._tokenize_prompt_async(
prompt_text,
lora_request=lora_request,
tokenization_kwargs=tokenization_kwargs,
)
inputs = token_inputs(
prompt=prompt_text,
prompt_token_ids=prompt_token_ids,
)
if cache_salt := parsed_content.get("cache_salt"):
inputs["cache_salt"] = cache_salt
return inputs
def _prompt_to_llm_inputs(
self,
prompt: SingletonPrompt,
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> SingletonInputs:
"""
Extract the singleton inputs from a prompt.
Arguments:
* prompt: single encoder or decoder input prompt
* lora_request: this is only valid for decoder prompts
Returns:
* [`SingletonInputs`][vllm.inputs.data.SingletonInputs] instance
"""
parsed = parse_singleton_prompt(prompt)
if parsed["type"] == "embeds":
return self._process_embeds(parsed["content"])
if parsed["type"] == "tokens":
return self._process_tokens(
parsed["content"],
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
if parsed["type"] == "text":
return self._process_text(
parsed["content"],
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
if parsed["type"] == "str":
return self._process_text(
TextPrompt(prompt=parsed["content"]),
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
assert_never(parsed)
async def _prompt_to_llm_inputs_async(
self,
prompt: SingletonPrompt,
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> SingletonInputs:
"""
Async version of
[`_prompt_to_llm_inputs`][vllm.inputs.preprocess.InputPreprocessor._prompt_to_llm_inputs].
"""
parsed = parse_singleton_prompt(prompt)
if parsed["type"] == "embeds":
return await self._process_embeds_async(parsed["content"])
if parsed["type"] == "tokens":
return await self._process_tokens_async(
parsed["content"],
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
if parsed["type"] == "text":
return await self._process_text_async(
parsed["content"],
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
if parsed["type"] == "str":
return await self._process_text_async(
TextPrompt(prompt=parsed["content"]),
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
assert_never(parsed)
def _build_enc_dec_llm_inputs(
self,
encoder_inputs: SingletonInputs,
decoder_inputs: Optional[SingletonInputs],
) -> EncoderDecoderInputs:
if (encoder_inputs["type"] == "embeds"
or decoder_inputs and decoder_inputs["type"] == "embeds"):
raise ValueError("Embedding inputs are not supported for encoder-"
"decoder models")
# Needed for mypy
encoder_inputs = cast(Union[TokenInputs, MultiModalInputs],
encoder_inputs)
decoder_inputs = cast(Optional[Union[TokenInputs, MultiModalInputs]],
decoder_inputs)
if decoder_inputs is None:
if self.model_config.hf_config.model_type == "whisper":
# For Whisper models, the text prompt should go to the decoder.
# If no explicit encoder/decoder inputs, then copy the prompt
# from the encoder to the decoder. The encoder tokens are later
# overridden by the audio features.
dec_token_ids = encoder_inputs["prompt_token_ids"].copy()
else:
dec_token_ids = self._prepare_decoder_input_ids_for_generation(
None)
decoder_inputs = token_inputs(dec_token_ids)
else:
if "multi_modal_data" in decoder_inputs:
raise ValueError("Multi-modal decoder inputs of encoder-"
"decoder models are not supported yet")
dec_token_ids = self._prepare_decoder_input_ids_for_generation(
decoder_inputs["prompt_token_ids"])
decoder_inputs["prompt_token_ids"] = dec_token_ids
return EncoderDecoderInputs(
encoder=encoder_inputs,
decoder=decoder_inputs,
)
def _split_enc_dec_mm_inputs(
self,
inputs: Union[SingletonInputs, MultiModalEncDecInputs],
decoder_inputs_to_override: Optional[SingletonInputs] = None,
) -> tuple[SingletonInputs, SingletonInputs]:
"""
For encoder/decoder models only:
Separate Encoder/Decoder inputs from a MultiModalEncDecInputs
"""
if (inputs["type"] == "embeds" or decoder_inputs_to_override
and decoder_inputs_to_override["type"] == "embeds"):
raise ValueError("Embedding inputs are not supported for encoder-"
"decoder models")
# Needed for mypy
inputs = cast(
Union[TokenInputs, MultiModalInputs, MultiModalEncDecInputs],
inputs,
)
decoder_inputs_to_override = cast(
Optional[Union[TokenInputs, MultiModalInputs]],
decoder_inputs_to_override,
)
encoder_inputs: SingletonInputs
decoder_inputs: SingletonInputs
if inputs["type"] == "multimodal": # Multimodal data inputs
if not ("encoder_prompt" in inputs
and "encoder_prompt_token_ids" in inputs):
raise RuntimeError("You should register an encoder-decoder "
"multi-modal processor for encoder-decoder "
"models.")
inputs = cast(MultiModalEncDecInputs, inputs)
encoder_inputs = token_inputs(
prompt=inputs["encoder_prompt"],
prompt_token_ids=inputs["encoder_prompt_token_ids"],
)
decoder_prompt_inputs = decoder_inputs_to_override or inputs
decoder_inputs = MultiModalInputs(
type="multimodal",
prompt=decoder_prompt_inputs.get("prompt", ""),
prompt_token_ids=decoder_prompt_inputs["prompt_token_ids"],
mm_kwargs=inputs["mm_kwargs"],
mm_hashes=inputs["mm_hashes"],
mm_placeholders=inputs["mm_placeholders"],
)
if cache_salt := inputs.get("cache_salt"):
decoder_inputs["cache_salt"] = cache_salt
elif inputs["type"] == "token": # Text-only inputs
encoder_inputs = token_inputs(prompt="", prompt_token_ids=[])
decoder_inputs = decoder_inputs_to_override or inputs
else:
assert_never(inputs) # type: ignore[arg-type]
return encoder_inputs, decoder_inputs
def _process_encoder_decoder_prompt(
self,
prompt: PromptType,
tokenization_kwargs: Optional[dict[str, Any]] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> EncoderDecoderInputs:
"""
For encoder/decoder models only:
Process an input prompt into an
[`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
instance.
There are two types of input prompts:
singleton prompts which carry only the
encoder prompt, and explicit encoder/decoder
prompts which carry both the encoder and the
decoder prompts as member variables.
This function handles the following scenarios:
* Singleton encoder prompt: extract encoder prompt
token ids & infer default decoder prompt token ids
* Explicit encoder/decoder prompt: extract encoder
and decoder prompt token ids
Note that for Explicit encoder/decoder prompts,
each sub-prompt (encoder or decoder prompt) can
have any possible singleton type; thus this
method relies on helper functions to obtain
token ids for the sub-prompts.
Arguments:
* prompt: an input prompt
Returns:
* [`EncoderDecoderInputs`][vllm.inputs.data.EncoderDecoderInputs]
instance
"""
encoder_inputs: SingletonInputs
decoder_inputs: Optional[SingletonInputs]
if is_explicit_encoder_decoder_prompt(prompt):
encoder_inputs = self._prompt_to_llm_inputs(
prompt["encoder_prompt"],
tokenization_kwargs=tokenization_kwargs,
mm_hash_overrides=mm_hash_overrides,
)
if (decoder_input := prompt["decoder_prompt"]) is None:
decoder_inputs = None
else:
decoder_inputs = self._prompt_to_llm_inputs(decoder_input)
# For multimodal model, override decoder prompt from processor
# with explicit decoder prompt.
if self.model_config.is_multimodal_model:
encoder_inputs, decoder_inputs = (
self._split_enc_dec_mm_inputs(encoder_inputs,
decoder_inputs))
else:
inputs = self._prompt_to_llm_inputs(
prompt,
tokenization_kwargs=tokenization_kwargs,
mm_hash_overrides=mm_hash_overrides,
)
if self.model_config.is_multimodal_model:
# Encoder-Decoder Multimodal model
encoder_inputs, decoder_inputs = (
self._split_enc_dec_mm_inputs(inputs))
else:
encoder_inputs = inputs
decoder_inputs = None
return self._build_enc_dec_llm_inputs(encoder_inputs, decoder_inputs)
async def _process_encoder_decoder_prompt_async(
self,
prompt: PromptType,
tokenization_kwargs: Optional[dict[str, Any]] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> EncoderDecoderInputs:
"""
Async version of
[`_process_encoder_decoder_prompt`][vllm.inputs.preprocess.InputPreprocessor._process_encoder_decoder_prompt].
"""
encoder_inputs: SingletonInputs
decoder_inputs: Optional[SingletonInputs]
if is_explicit_encoder_decoder_prompt(prompt):
encoder_task = self._prompt_to_llm_inputs_async(
prompt["encoder_prompt"],
tokenization_kwargs=tokenization_kwargs,
mm_hash_overrides=mm_hash_overrides,
)
if (decoder_input := prompt["decoder_prompt"]) is None:
encoder_inputs = await encoder_task
decoder_inputs = None
else:
decoder_task = self._prompt_to_llm_inputs_async(
decoder_input,
tokenization_kwargs=tokenization_kwargs,
mm_hash_overrides=mm_hash_overrides,
)
encoder_inputs, decoder_inputs = await asyncio.gather(
encoder_task, decoder_task)
# For multimodal model, override decoder prompt from processor
# with explicit decoder prompt.
if self.model_config.is_multimodal_model:
encoder_inputs, decoder_inputs = (
self._split_enc_dec_mm_inputs(encoder_inputs,
decoder_inputs))
else:
inputs = await self._prompt_to_llm_inputs_async(
prompt,
tokenization_kwargs=tokenization_kwargs,
mm_hash_overrides=mm_hash_overrides,
)
if self.model_config.is_multimodal_model:
# Encoder-Decoder Multimodal model
encoder_inputs, decoder_inputs = (
self._split_enc_dec_mm_inputs(inputs))
else:
encoder_inputs = inputs
decoder_inputs = None
return self._build_enc_dec_llm_inputs(encoder_inputs, decoder_inputs)
def _build_decoder_only_llm_inputs(
self,
prompt_inputs: DecoderOnlyInputs,
) -> DecoderOnlyInputs:
if "prompt_token_ids" in prompt_inputs:
prompt_inputs = cast(Union[TokenInputs, MultiModalInputs],
prompt_inputs) # Needed for mypy
return prompt_inputs
def _process_decoder_only_prompt(
self,
prompt: SingletonPrompt,
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> DecoderOnlyInputs:
"""
For decoder-only models:
Process an input prompt into a
[`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] instance.
Arguments:
* prompt: input prompt
* lora_request
Returns:
* [`DecoderOnlyInputs`][vllm.inputs.data.DecoderOnlyInputs] instance
"""
prompt_comps = self._prompt_to_llm_inputs(
prompt,
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
return self._build_decoder_only_llm_inputs(prompt_comps)
async def _process_decoder_only_prompt_async(
self,
prompt: SingletonPrompt,
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> DecoderOnlyInputs:
"""
Async version of
[`_process_decoder_only_prompt`][vllm.inputs.preprocess.InputPreprocessor._process_decoder_only_prompt].
"""
prompt_comps = await self._prompt_to_llm_inputs_async(
prompt,
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
return self._build_decoder_only_llm_inputs(prompt_comps)
def preprocess(
self,
prompt: PromptType,
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> ProcessorInputs:
"""Preprocess the input prompt."""
if self.model_config.is_encoder_decoder:
# Encoder-decoder model requires special mapping of
# input prompts to encoder & decoder.
return self._process_encoder_decoder_prompt(
prompt,
tokenization_kwargs,
mm_hash_overrides=mm_hash_overrides,
)
if is_explicit_encoder_decoder_prompt(prompt):
raise ValueError("Cannot pass encoder-decoder prompt "
"to decoder-only models")
# Decoder-only operation
return self._process_decoder_only_prompt(
prompt,
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
async def preprocess_async(
self,
prompt: PromptType,
tokenization_kwargs: Optional[dict[str, Any]] = None,
lora_request: Optional[LoRARequest] = None,
*,
mm_hash_overrides: Optional[Union[dict[str, list[str]],
MultiModalUUIDDict]] = None,
) -> ProcessorInputs:
"""
Async version of
[`preprocess`][vllm.inputs.preprocess.InputPreprocessor.preprocess].
"""
if self.model_config.is_encoder_decoder:
# Encoder-decoder model requires special mapping of
# input prompts to encoder & decoder.
return await self._process_encoder_decoder_prompt_async(
prompt,
tokenization_kwargs,
mm_hash_overrides=mm_hash_overrides,
)
if is_explicit_encoder_decoder_prompt(prompt):
raise ValueError("Cannot pass encoder-decoder prompt "
"to decoder-only models")
# Decoder-only operation
return await self._process_decoder_only_prompt_async(
prompt,
tokenization_kwargs=tokenization_kwargs,
lora_request=lora_request,
mm_hash_overrides=mm_hash_overrides,
)
def clear_cache(self) -> None:
if self.mm_processor_cache is not None:
self.mm_processor_cache.clear_cache()