Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu> Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
464 lines
18 KiB
Python
464 lines
18 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import os
|
|
from datetime import timedelta
|
|
from functools import cache, lru_cache, wraps
|
|
from typing import TYPE_CHECKING, Optional
|
|
|
|
import torch
|
|
from torch.distributed import PrefixStore, ProcessGroup
|
|
from torch.distributed.distributed_c10d import is_nccl_available
|
|
|
|
import vllm.envs as envs
|
|
from vllm.logger import init_logger
|
|
from vllm.utils import cuda_device_count_stateless
|
|
|
|
from .interface import DeviceCapability, Platform, PlatformEnum, _Backend
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.config import ModelConfig, VllmConfig
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
try:
|
|
from amdsmi import (AmdSmiException, amdsmi_get_gpu_asic_info,
|
|
amdsmi_get_processor_handles, amdsmi_init,
|
|
amdsmi_shut_down, amdsmi_topo_get_link_type)
|
|
except ImportError as e:
|
|
logger.warning("Failed to import from amdsmi with %r", e)
|
|
|
|
try:
|
|
import vllm._C # noqa: F401
|
|
except ImportError as e:
|
|
logger.warning("Failed to import from vllm._C with %r", e)
|
|
|
|
# import custom ops, trigger op registration
|
|
try:
|
|
import vllm._rocm_C # noqa: F401
|
|
except ImportError as e:
|
|
logger.warning("Failed to import from vllm._rocm_C with %r", e)
|
|
|
|
# Models not supported by ROCm.
|
|
_ROCM_UNSUPPORTED_MODELS: list[str] = []
|
|
|
|
# Models partially supported by ROCm.
|
|
# Architecture -> Reason.
|
|
_ROCM_SWA_REASON = ("Sliding window attention (SWA) is not yet supported in "
|
|
"Triton flash attention. For half-precision SWA support, "
|
|
"please use CK flash attention by setting "
|
|
"`VLLM_USE_TRITON_FLASH_ATTN=0`")
|
|
_ROCM_PARTIALLY_SUPPORTED_MODELS: dict[str, str] = {
|
|
"Qwen2ForCausalLM":
|
|
_ROCM_SWA_REASON,
|
|
"MistralForCausalLM":
|
|
_ROCM_SWA_REASON,
|
|
"MixtralForCausalLM":
|
|
_ROCM_SWA_REASON,
|
|
"PaliGemmaForConditionalGeneration":
|
|
("ROCm flash attention does not yet "
|
|
"fully support 32-bit precision on PaliGemma"),
|
|
"Phi3VForCausalLM":
|
|
("ROCm Triton flash attention may run into compilation errors due to "
|
|
"excessive use of shared memory. If this happens, disable Triton FA "
|
|
"by setting `VLLM_USE_TRITON_FLASH_ATTN=0`")
|
|
}
|
|
_ROCM_DEVICE_ID_NAME_MAP: dict[str, str] = {
|
|
"0x74a0": "AMD_Instinct_MI300A",
|
|
"0x74a1": "AMD_Instinct_MI300X",
|
|
"0x74b5": "AMD_Instinct_MI300X", # MI300X VF
|
|
"0x74a5": "AMD_Instinct_MI325X",
|
|
"0x74b9": "AMD_Instinct_MI325X", # MI325X VF
|
|
"0x74a9": "AMD_Instinct_MI300X_HF",
|
|
"0x74bd": "AMD_Instinct_MI300X_HF",
|
|
}
|
|
|
|
# Prevent use of clashing `{CUDA/HIP}_VISIBLE_DEVICES``
|
|
if "HIP_VISIBLE_DEVICES" in os.environ:
|
|
val = os.environ["HIP_VISIBLE_DEVICES"]
|
|
if cuda_val := os.environ.get("CUDA_VISIBLE_DEVICES", None):
|
|
assert val == cuda_val
|
|
else:
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = val
|
|
|
|
# AMDSMI utils
|
|
# Note that NVML is not affected by `{CUDA/HIP}_VISIBLE_DEVICES`,
|
|
# all the related functions work on real physical device ids.
|
|
# the major benefit of using AMDSMI is that it will not initialize CUDA
|
|
|
|
|
|
def with_amdsmi_context(fn):
|
|
|
|
@wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
amdsmi_init()
|
|
try:
|
|
return fn(*args, **kwargs)
|
|
finally:
|
|
amdsmi_shut_down()
|
|
|
|
return wrapper
|
|
|
|
|
|
@cache
|
|
def on_gfx1x() -> bool:
|
|
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
|
|
return any(arch in GPU_ARCH for arch in ["gfx11", "gfx12"])
|
|
|
|
|
|
@cache
|
|
def on_mi3xx() -> bool:
|
|
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
|
|
return any(arch in GPU_ARCH for arch in ["gfx942", "gfx950"])
|
|
|
|
|
|
@cache
|
|
def on_gfx9() -> bool:
|
|
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
|
|
return any(arch in GPU_ARCH for arch in ["gfx90a", "gfx942", "gfx950"])
|
|
|
|
|
|
@cache
|
|
def use_rocm_custom_paged_attention(
|
|
qtype: torch.dtype,
|
|
head_size: int,
|
|
block_size: int,
|
|
gqa_ratio: int,
|
|
max_seq_len: int,
|
|
sliding_window: int,
|
|
kv_cache_dtype: str,
|
|
alibi_slopes: Optional[torch.Tensor] = None,
|
|
sinks: Optional[torch.Tensor] = None) -> bool:
|
|
|
|
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
|
|
ON_GFX9 = any(arch in GPU_ARCH for arch in ["gfx90a", "gfx942", "gfx950"])
|
|
ON_GFX11_GFX12 = any(arch in GPU_ARCH for arch in ["gfx11", "gfx12"])
|
|
|
|
# custom paged attn always supported on V0. On V1, requires sliding window
|
|
# disabled due to observed numerical discrepancy.
|
|
if ON_GFX9:
|
|
return ((not envs.VLLM_USE_V1 or sliding_window == 0
|
|
or sliding_window == (-1, -1))
|
|
and (qtype == torch.half or qtype == torch.bfloat16)
|
|
and (head_size == 64 or head_size == 128)
|
|
and (block_size == 16 or block_size == 32)
|
|
and (gqa_ratio >= 1 and gqa_ratio <= 16)
|
|
and max_seq_len <= 128 * 1024
|
|
and (envs.VLLM_ROCM_CUSTOM_PAGED_ATTN)
|
|
and not (envs.VLLM_ROCM_USE_AITER_PAGED_ATTN
|
|
and envs.VLLM_ROCM_USE_AITER) and sinks is None)
|
|
|
|
else:
|
|
return (ON_GFX11_GFX12 and (not envs.VLLM_USE_V1 or sliding_window == 0
|
|
or sliding_window == (-1, -1))
|
|
and (qtype == torch.half or qtype == torch.bfloat16)
|
|
and head_size == 128 and block_size == 16
|
|
and (gqa_ratio >= 3 and gqa_ratio <= 16)
|
|
and max_seq_len <= 128 * 1024 and alibi_slopes is None
|
|
and kv_cache_dtype == "auto"
|
|
and envs.VLLM_ROCM_CUSTOM_PAGED_ATTN and sinks is None)
|
|
|
|
|
|
class RocmPlatform(Platform):
|
|
_enum = PlatformEnum.ROCM
|
|
device_name: str = "rocm"
|
|
device_type: str = "cuda"
|
|
dispatch_key: str = "CUDA"
|
|
ray_device_key: str = "GPU"
|
|
dist_backend: str = "nccl"
|
|
# rocm shares the same device control env var as CUDA
|
|
device_control_env_var: str = "CUDA_VISIBLE_DEVICES"
|
|
|
|
supported_quantization: list[str] = [
|
|
"awq", "gptq", "fp8", "compressed-tensors", "fbgemm_fp8", "gguf",
|
|
"quark", "ptpc_fp8", "mxfp4"
|
|
]
|
|
|
|
@classmethod
|
|
def get_vit_attn_backend(cls, support_fa: bool = False) -> _Backend:
|
|
if support_fa:
|
|
if (envs.VLLM_ROCM_USE_AITER and envs.VLLM_ROCM_USE_AITER_MHA
|
|
and on_gfx9()):
|
|
# Note: AITER FA is only supported for Qwen-VL models.
|
|
# TODO: Add support for other VL models in their model class.
|
|
return _Backend.ROCM_AITER_FA
|
|
if on_gfx9():
|
|
return _Backend.FLASH_ATTN
|
|
return _Backend.TORCH_SDPA
|
|
|
|
@classmethod
|
|
def get_attn_backend_cls(cls, selected_backend, head_size, dtype,
|
|
kv_cache_dtype, block_size, use_v1, use_mla,
|
|
has_sink) -> str:
|
|
if use_mla:
|
|
from vllm.attention.backends.rocm_aiter_mla import (
|
|
is_aiter_mla_enabled)
|
|
|
|
if selected_backend is None:
|
|
selected_backend = (_Backend.ROCM_AITER_MLA if
|
|
is_aiter_mla_enabled() or block_size == 1
|
|
else _Backend.TRITON_MLA)
|
|
|
|
if selected_backend == _Backend.TRITON_MLA:
|
|
if block_size != 1:
|
|
if use_v1:
|
|
logger.info_once(
|
|
"Using Triton MLA backend on V1 engine.")
|
|
return ("vllm.v1.attention.backends.mla."
|
|
"triton_mla.TritonMLABackend")
|
|
else:
|
|
logger.info("Using Triton MLA backend.")
|
|
return "vllm.attention.backends.triton_mla.TritonMLABackend" # noqa: E501
|
|
else:
|
|
raise ValueError(
|
|
f" The selected backend, {selected_backend.name},"
|
|
f"does not support block size {block_size}.")
|
|
elif selected_backend == _Backend.ROCM_AITER_MLA \
|
|
or selected_backend == _Backend.ROCM_AITER_MLA_VLLM_V1:
|
|
if block_size == 1:
|
|
if use_v1:
|
|
logger.info("Using AITER MLA backend on V1 engine.")
|
|
return "vllm.v1.attention.backends.mla.rocm_aiter_mla.AiterMLABackend" # noqa: E501
|
|
else:
|
|
logger.info("Using AITER MLA backend")
|
|
return "vllm.attention.backends.rocm_aiter_mla.AiterMLABackend" # noqa: E501
|
|
else:
|
|
raise ValueError(
|
|
f" The selected backend, {selected_backend.name},"
|
|
f"does not support block size {block_size}."
|
|
"(currently only supports block size 1)")
|
|
else:
|
|
raise ValueError(
|
|
f" The selected backend, {selected_backend.name},"
|
|
f"is not MLA type while requested for MLA backend.")
|
|
|
|
if selected_backend is None or selected_backend == _Backend.FLASH_ATTN:
|
|
selected_backend = _Backend.ROCM_FLASH
|
|
|
|
if envs.VLLM_USE_V1:
|
|
if envs.VLLM_ROCM_USE_AITER and envs.VLLM_ROCM_USE_AITER_MHA \
|
|
and on_gfx9():
|
|
logger.info("Using Flash Attention backend on V1 engine.")
|
|
return ("vllm.v1.attention.backends."
|
|
"rocm_aiter_fa.AiterFlashAttentionBackend")
|
|
else:
|
|
logger.info("Using Triton Attention backend on V1 engine.")
|
|
return ("vllm.v1.attention.backends."
|
|
"triton_attn.TritonAttentionBackend")
|
|
if selected_backend == _Backend.ROCM_FLASH:
|
|
if not cls.has_device_capability(90):
|
|
# not Instinct series GPUs.
|
|
logger.info("flash_attn is not supported on NAVI GPUs.")
|
|
else:
|
|
logger.info("%s is not supported in AMD GPUs.", selected_backend)
|
|
logger.info("Using ROCmFlashAttention backend.")
|
|
return "vllm.attention.backends.rocm_flash_attn.ROCmFlashAttentionBackend" # noqa: E501
|
|
|
|
@classmethod
|
|
def set_device(cls, device: torch.device) -> None:
|
|
"""
|
|
Set the device for the current platform.
|
|
"""
|
|
torch.cuda.set_device(device)
|
|
|
|
@classmethod
|
|
@lru_cache(maxsize=8)
|
|
def get_device_capability(cls,
|
|
device_id: int = 0
|
|
) -> Optional[DeviceCapability]:
|
|
major, minor = torch.cuda.get_device_capability(device_id)
|
|
return DeviceCapability(major=major, minor=minor)
|
|
|
|
@classmethod
|
|
@with_amdsmi_context
|
|
def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
|
|
"""
|
|
Query if the set of gpus are fully connected by xgmi (1 hop)
|
|
"""
|
|
handles = [
|
|
amdsmi_get_processor_handles()[i] for i in physical_device_ids
|
|
]
|
|
for i, handle in enumerate(handles):
|
|
for j, peer_handle in enumerate(handles):
|
|
if i < j:
|
|
try:
|
|
link_type = amdsmi_topo_get_link_type(
|
|
handle, peer_handle)
|
|
# type is 2 for XGMI
|
|
if link_type["hops"] != 1 or link_type["type"] != 2:
|
|
return False
|
|
except AmdSmiException as error:
|
|
logger.error("AMD 1 hop XGMI detection failed.",
|
|
exc_info=error)
|
|
return False
|
|
return True
|
|
|
|
@classmethod
|
|
@with_amdsmi_context
|
|
@lru_cache(maxsize=8)
|
|
def get_device_name(cls, device_id: int = 0) -> str:
|
|
physical_device_id = cls.device_id_to_physical_device_id(device_id)
|
|
handle = amdsmi_get_processor_handles()[physical_device_id]
|
|
asic_info = amdsmi_get_gpu_asic_info(handle)
|
|
device_name: str = asic_info["device_id"]
|
|
if device_name in _ROCM_DEVICE_ID_NAME_MAP:
|
|
return _ROCM_DEVICE_ID_NAME_MAP[device_name]
|
|
return asic_info["market_name"]
|
|
|
|
@classmethod
|
|
def get_device_total_memory(cls, device_id: int = 0) -> int:
|
|
device_props = torch.cuda.get_device_properties(device_id)
|
|
return device_props.total_memory
|
|
|
|
@classmethod
|
|
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
|
|
if enforce_eager and not envs.VLLM_USE_V1:
|
|
logger.warning(
|
|
"To see benefits of async output processing, enable CUDA "
|
|
"graph. Since, enforce-eager is enabled, async output "
|
|
"processor cannot be used")
|
|
return False
|
|
return True
|
|
|
|
@classmethod
|
|
def check_and_update_config(cls, vllm_config: "VllmConfig") -> None:
|
|
cache_config = vllm_config.cache_config
|
|
if cache_config and cache_config.block_size is None:
|
|
cache_config.block_size = 16
|
|
|
|
parallel_config = vllm_config.parallel_config
|
|
if parallel_config.worker_cls == "auto":
|
|
if vllm_config.speculative_config:
|
|
if not envs.VLLM_USE_V1:
|
|
raise NotImplementedError(
|
|
"Speculative decoding is not supported on vLLM V0.")
|
|
parallel_config.worker_cls = "vllm.v1.worker.gpu_worker.Worker"
|
|
else:
|
|
if envs.VLLM_USE_V1:
|
|
parallel_config.worker_cls = \
|
|
"vllm.v1.worker.gpu_worker.Worker"
|
|
else:
|
|
parallel_config.worker_cls = "vllm.worker.worker.Worker"
|
|
|
|
@classmethod
|
|
def verify_model_arch(cls, model_arch: str) -> None:
|
|
if model_arch in _ROCM_UNSUPPORTED_MODELS:
|
|
raise ValueError(f"Model architecture '{model_arch}' is not "
|
|
"supported by ROCm for now.")
|
|
|
|
if model_arch in _ROCM_PARTIALLY_SUPPORTED_MODELS:
|
|
msg = _ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch]
|
|
logger.warning(
|
|
"Model architecture '%s' is partially "
|
|
"supported by ROCm: %s", model_arch, msg)
|
|
|
|
@classmethod
|
|
def verify_quantization(cls, quant: str) -> None:
|
|
super().verify_quantization(quant)
|
|
if quant == "awq" and not envs.VLLM_USE_TRITON_AWQ:
|
|
logger.warning(
|
|
"Using AWQ quantization with ROCm, but VLLM_USE_TRITON_AWQ"
|
|
" is not set, enabling VLLM_USE_TRITON_AWQ.")
|
|
envs.VLLM_USE_TRITON_AWQ = True
|
|
|
|
@classmethod
|
|
def get_punica_wrapper(cls) -> str:
|
|
return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"
|
|
|
|
@classmethod
|
|
def get_current_memory_usage(cls,
|
|
device: Optional[torch.types.Device] = None
|
|
) -> float:
|
|
torch.cuda.reset_peak_memory_stats(device)
|
|
return torch.cuda.mem_get_info(device)[1] - torch.cuda.mem_get_info(
|
|
device)[0]
|
|
|
|
@classmethod
|
|
def get_device_communicator_cls(cls) -> str:
|
|
return "vllm.distributed.device_communicators.cuda_communicator.CudaCommunicator" # noqa
|
|
|
|
@classmethod
|
|
def supports_mx(cls) -> bool:
|
|
gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
|
|
return any(gfx in gcn_arch for gfx in ["gfx95"])
|
|
|
|
@classmethod
|
|
def supports_fp8(cls) -> bool:
|
|
gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
|
|
return any(gfx in gcn_arch for gfx in ['gfx94', 'gfx95', 'gfx12'])
|
|
|
|
@classmethod
|
|
def is_fp8_fnuz(cls) -> bool:
|
|
# only device 0 is checked, this assumes MI300 platforms are homogeneous
|
|
return 'gfx94' in torch.cuda.get_device_properties(0).gcnArchName
|
|
|
|
@classmethod
|
|
def fp8_dtype(cls) -> torch.dtype:
|
|
if cls.is_fp8_fnuz():
|
|
return torch.float8_e4m3fnuz
|
|
else:
|
|
return torch.float8_e4m3fn
|
|
|
|
@classmethod
|
|
def supports_v1(cls, model_config: "ModelConfig") -> bool:
|
|
# V1 support on AMD gpus is experimental
|
|
return True
|
|
|
|
@classmethod
|
|
def use_custom_allreduce(cls) -> bool:
|
|
# We only enable custom allreduce for MI300 series
|
|
gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
|
|
supported_archs = ['gfx94', 'gfx95']
|
|
return any(gfx in gcn_arch for gfx in supported_archs)
|
|
|
|
@classmethod
|
|
def get_cu_count(cls, device_id: int = 0) -> int:
|
|
return torch.cuda.get_device_properties(
|
|
device_id).multi_processor_count
|
|
|
|
@classmethod
|
|
def is_navi(cls) -> bool:
|
|
return 'gfx1' in torch.cuda.get_device_properties(0).gcnArchName
|
|
|
|
@classmethod
|
|
def get_piecewise_backend_cls(cls) -> str:
|
|
return "vllm.compilation.cuda_piecewise_backend.CUDAPiecewiseBackend" # noqa
|
|
|
|
@classmethod
|
|
def stateless_init_device_torch_dist_pg(
|
|
cls,
|
|
backend: str,
|
|
prefix_store: PrefixStore,
|
|
group_rank: int,
|
|
group_size: int,
|
|
timeout: timedelta,
|
|
) -> ProcessGroup:
|
|
assert is_nccl_available()
|
|
pg: ProcessGroup = ProcessGroup(
|
|
prefix_store,
|
|
group_rank,
|
|
group_size,
|
|
)
|
|
from torch.distributed.distributed_c10d import ProcessGroupNCCL
|
|
|
|
backend_options = ProcessGroupNCCL.Options()
|
|
backend_options._timeout = timeout
|
|
|
|
backend_class = ProcessGroupNCCL(prefix_store, group_rank, group_size,
|
|
backend_options)
|
|
backend_type = ProcessGroup.BackendType.NCCL
|
|
device = torch.device("cuda")
|
|
pg._set_default_backend(backend_type)
|
|
backend_class._set_sequence_number_for_group()
|
|
|
|
pg._register_backend(device, backend_type, backend_class)
|
|
return pg
|
|
|
|
@classmethod
|
|
def device_count(cls) -> int:
|
|
return cuda_device_count_stateless()
|
|
|
|
@classmethod
|
|
def is_kv_cache_dtype_supported(cls, kv_cache_dtype: str) -> bool:
|
|
return True
|