Files
vllm-dev/vllm/platforms/rocm.py
Woosuk Kwon 71683ca6f6 [V0 Deprecation] Remove multi-step scheduling (#22138)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-08-12 20:18:39 -07:00

464 lines
18 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from datetime import timedelta
from functools import cache, lru_cache, wraps
from typing import TYPE_CHECKING, Optional
import torch
from torch.distributed import PrefixStore, ProcessGroup
from torch.distributed.distributed_c10d import is_nccl_available
import vllm.envs as envs
from vllm.logger import init_logger
from vllm.utils import cuda_device_count_stateless
from .interface import DeviceCapability, Platform, PlatformEnum, _Backend
if TYPE_CHECKING:
from vllm.config import ModelConfig, VllmConfig
logger = init_logger(__name__)
try:
from amdsmi import (AmdSmiException, amdsmi_get_gpu_asic_info,
amdsmi_get_processor_handles, amdsmi_init,
amdsmi_shut_down, amdsmi_topo_get_link_type)
except ImportError as e:
logger.warning("Failed to import from amdsmi with %r", e)
try:
import vllm._C # noqa: F401
except ImportError as e:
logger.warning("Failed to import from vllm._C with %r", e)
# import custom ops, trigger op registration
try:
import vllm._rocm_C # noqa: F401
except ImportError as e:
logger.warning("Failed to import from vllm._rocm_C with %r", e)
# Models not supported by ROCm.
_ROCM_UNSUPPORTED_MODELS: list[str] = []
# Models partially supported by ROCm.
# Architecture -> Reason.
_ROCM_SWA_REASON = ("Sliding window attention (SWA) is not yet supported in "
"Triton flash attention. For half-precision SWA support, "
"please use CK flash attention by setting "
"`VLLM_USE_TRITON_FLASH_ATTN=0`")
_ROCM_PARTIALLY_SUPPORTED_MODELS: dict[str, str] = {
"Qwen2ForCausalLM":
_ROCM_SWA_REASON,
"MistralForCausalLM":
_ROCM_SWA_REASON,
"MixtralForCausalLM":
_ROCM_SWA_REASON,
"PaliGemmaForConditionalGeneration":
("ROCm flash attention does not yet "
"fully support 32-bit precision on PaliGemma"),
"Phi3VForCausalLM":
("ROCm Triton flash attention may run into compilation errors due to "
"excessive use of shared memory. If this happens, disable Triton FA "
"by setting `VLLM_USE_TRITON_FLASH_ATTN=0`")
}
_ROCM_DEVICE_ID_NAME_MAP: dict[str, str] = {
"0x74a0": "AMD_Instinct_MI300A",
"0x74a1": "AMD_Instinct_MI300X",
"0x74b5": "AMD_Instinct_MI300X", # MI300X VF
"0x74a5": "AMD_Instinct_MI325X",
"0x74b9": "AMD_Instinct_MI325X", # MI325X VF
"0x74a9": "AMD_Instinct_MI300X_HF",
"0x74bd": "AMD_Instinct_MI300X_HF",
}
# Prevent use of clashing `{CUDA/HIP}_VISIBLE_DEVICES``
if "HIP_VISIBLE_DEVICES" in os.environ:
val = os.environ["HIP_VISIBLE_DEVICES"]
if cuda_val := os.environ.get("CUDA_VISIBLE_DEVICES", None):
assert val == cuda_val
else:
os.environ["CUDA_VISIBLE_DEVICES"] = val
# AMDSMI utils
# Note that NVML is not affected by `{CUDA/HIP}_VISIBLE_DEVICES`,
# all the related functions work on real physical device ids.
# the major benefit of using AMDSMI is that it will not initialize CUDA
def with_amdsmi_context(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
amdsmi_init()
try:
return fn(*args, **kwargs)
finally:
amdsmi_shut_down()
return wrapper
@cache
def on_gfx1x() -> bool:
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
return any(arch in GPU_ARCH for arch in ["gfx11", "gfx12"])
@cache
def on_mi3xx() -> bool:
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
return any(arch in GPU_ARCH for arch in ["gfx942", "gfx950"])
@cache
def on_gfx9() -> bool:
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
return any(arch in GPU_ARCH for arch in ["gfx90a", "gfx942", "gfx950"])
@cache
def use_rocm_custom_paged_attention(
qtype: torch.dtype,
head_size: int,
block_size: int,
gqa_ratio: int,
max_seq_len: int,
sliding_window: int,
kv_cache_dtype: str,
alibi_slopes: Optional[torch.Tensor] = None,
sinks: Optional[torch.Tensor] = None) -> bool:
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
ON_GFX9 = any(arch in GPU_ARCH for arch in ["gfx90a", "gfx942", "gfx950"])
ON_GFX11_GFX12 = any(arch in GPU_ARCH for arch in ["gfx11", "gfx12"])
# custom paged attn always supported on V0. On V1, requires sliding window
# disabled due to observed numerical discrepancy.
if ON_GFX9:
return ((not envs.VLLM_USE_V1 or sliding_window == 0
or sliding_window == (-1, -1))
and (qtype == torch.half or qtype == torch.bfloat16)
and (head_size == 64 or head_size == 128)
and (block_size == 16 or block_size == 32)
and (gqa_ratio >= 1 and gqa_ratio <= 16)
and max_seq_len <= 128 * 1024
and (envs.VLLM_ROCM_CUSTOM_PAGED_ATTN)
and not (envs.VLLM_ROCM_USE_AITER_PAGED_ATTN
and envs.VLLM_ROCM_USE_AITER) and sinks is None)
else:
return (ON_GFX11_GFX12 and (not envs.VLLM_USE_V1 or sliding_window == 0
or sliding_window == (-1, -1))
and (qtype == torch.half or qtype == torch.bfloat16)
and head_size == 128 and block_size == 16
and (gqa_ratio >= 3 and gqa_ratio <= 16)
and max_seq_len <= 128 * 1024 and alibi_slopes is None
and kv_cache_dtype == "auto"
and envs.VLLM_ROCM_CUSTOM_PAGED_ATTN and sinks is None)
class RocmPlatform(Platform):
_enum = PlatformEnum.ROCM
device_name: str = "rocm"
device_type: str = "cuda"
dispatch_key: str = "CUDA"
ray_device_key: str = "GPU"
dist_backend: str = "nccl"
# rocm shares the same device control env var as CUDA
device_control_env_var: str = "CUDA_VISIBLE_DEVICES"
supported_quantization: list[str] = [
"awq", "gptq", "fp8", "compressed-tensors", "fbgemm_fp8", "gguf",
"quark", "ptpc_fp8", "mxfp4"
]
@classmethod
def get_vit_attn_backend(cls, support_fa: bool = False) -> _Backend:
if support_fa:
if (envs.VLLM_ROCM_USE_AITER and envs.VLLM_ROCM_USE_AITER_MHA
and on_gfx9()):
# Note: AITER FA is only supported for Qwen-VL models.
# TODO: Add support for other VL models in their model class.
return _Backend.ROCM_AITER_FA
if on_gfx9():
return _Backend.FLASH_ATTN
return _Backend.TORCH_SDPA
@classmethod
def get_attn_backend_cls(cls, selected_backend, head_size, dtype,
kv_cache_dtype, block_size, use_v1, use_mla,
has_sink) -> str:
if use_mla:
from vllm.attention.backends.rocm_aiter_mla import (
is_aiter_mla_enabled)
if selected_backend is None:
selected_backend = (_Backend.ROCM_AITER_MLA if
is_aiter_mla_enabled() or block_size == 1
else _Backend.TRITON_MLA)
if selected_backend == _Backend.TRITON_MLA:
if block_size != 1:
if use_v1:
logger.info_once(
"Using Triton MLA backend on V1 engine.")
return ("vllm.v1.attention.backends.mla."
"triton_mla.TritonMLABackend")
else:
logger.info("Using Triton MLA backend.")
return "vllm.attention.backends.triton_mla.TritonMLABackend" # noqa: E501
else:
raise ValueError(
f" The selected backend, {selected_backend.name},"
f"does not support block size {block_size}.")
elif selected_backend == _Backend.ROCM_AITER_MLA \
or selected_backend == _Backend.ROCM_AITER_MLA_VLLM_V1:
if block_size == 1:
if use_v1:
logger.info("Using AITER MLA backend on V1 engine.")
return "vllm.v1.attention.backends.mla.rocm_aiter_mla.AiterMLABackend" # noqa: E501
else:
logger.info("Using AITER MLA backend")
return "vllm.attention.backends.rocm_aiter_mla.AiterMLABackend" # noqa: E501
else:
raise ValueError(
f" The selected backend, {selected_backend.name},"
f"does not support block size {block_size}."
"(currently only supports block size 1)")
else:
raise ValueError(
f" The selected backend, {selected_backend.name},"
f"is not MLA type while requested for MLA backend.")
if selected_backend is None or selected_backend == _Backend.FLASH_ATTN:
selected_backend = _Backend.ROCM_FLASH
if envs.VLLM_USE_V1:
if envs.VLLM_ROCM_USE_AITER and envs.VLLM_ROCM_USE_AITER_MHA \
and on_gfx9():
logger.info("Using Flash Attention backend on V1 engine.")
return ("vllm.v1.attention.backends."
"rocm_aiter_fa.AiterFlashAttentionBackend")
else:
logger.info("Using Triton Attention backend on V1 engine.")
return ("vllm.v1.attention.backends."
"triton_attn.TritonAttentionBackend")
if selected_backend == _Backend.ROCM_FLASH:
if not cls.has_device_capability(90):
# not Instinct series GPUs.
logger.info("flash_attn is not supported on NAVI GPUs.")
else:
logger.info("%s is not supported in AMD GPUs.", selected_backend)
logger.info("Using ROCmFlashAttention backend.")
return "vllm.attention.backends.rocm_flash_attn.ROCmFlashAttentionBackend" # noqa: E501
@classmethod
def set_device(cls, device: torch.device) -> None:
"""
Set the device for the current platform.
"""
torch.cuda.set_device(device)
@classmethod
@lru_cache(maxsize=8)
def get_device_capability(cls,
device_id: int = 0
) -> Optional[DeviceCapability]:
major, minor = torch.cuda.get_device_capability(device_id)
return DeviceCapability(major=major, minor=minor)
@classmethod
@with_amdsmi_context
def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
"""
Query if the set of gpus are fully connected by xgmi (1 hop)
"""
handles = [
amdsmi_get_processor_handles()[i] for i in physical_device_ids
]
for i, handle in enumerate(handles):
for j, peer_handle in enumerate(handles):
if i < j:
try:
link_type = amdsmi_topo_get_link_type(
handle, peer_handle)
# type is 2 for XGMI
if link_type["hops"] != 1 or link_type["type"] != 2:
return False
except AmdSmiException as error:
logger.error("AMD 1 hop XGMI detection failed.",
exc_info=error)
return False
return True
@classmethod
@with_amdsmi_context
@lru_cache(maxsize=8)
def get_device_name(cls, device_id: int = 0) -> str:
physical_device_id = cls.device_id_to_physical_device_id(device_id)
handle = amdsmi_get_processor_handles()[physical_device_id]
asic_info = amdsmi_get_gpu_asic_info(handle)
device_name: str = asic_info["device_id"]
if device_name in _ROCM_DEVICE_ID_NAME_MAP:
return _ROCM_DEVICE_ID_NAME_MAP[device_name]
return asic_info["market_name"]
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
device_props = torch.cuda.get_device_properties(device_id)
return device_props.total_memory
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
if enforce_eager and not envs.VLLM_USE_V1:
logger.warning(
"To see benefits of async output processing, enable CUDA "
"graph. Since, enforce-eager is enabled, async output "
"processor cannot be used")
return False
return True
@classmethod
def check_and_update_config(cls, vllm_config: "VllmConfig") -> None:
cache_config = vllm_config.cache_config
if cache_config and cache_config.block_size is None:
cache_config.block_size = 16
parallel_config = vllm_config.parallel_config
if parallel_config.worker_cls == "auto":
if vllm_config.speculative_config:
if not envs.VLLM_USE_V1:
raise NotImplementedError(
"Speculative decoding is not supported on vLLM V0.")
parallel_config.worker_cls = "vllm.v1.worker.gpu_worker.Worker"
else:
if envs.VLLM_USE_V1:
parallel_config.worker_cls = \
"vllm.v1.worker.gpu_worker.Worker"
else:
parallel_config.worker_cls = "vllm.worker.worker.Worker"
@classmethod
def verify_model_arch(cls, model_arch: str) -> None:
if model_arch in _ROCM_UNSUPPORTED_MODELS:
raise ValueError(f"Model architecture '{model_arch}' is not "
"supported by ROCm for now.")
if model_arch in _ROCM_PARTIALLY_SUPPORTED_MODELS:
msg = _ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch]
logger.warning(
"Model architecture '%s' is partially "
"supported by ROCm: %s", model_arch, msg)
@classmethod
def verify_quantization(cls, quant: str) -> None:
super().verify_quantization(quant)
if quant == "awq" and not envs.VLLM_USE_TRITON_AWQ:
logger.warning(
"Using AWQ quantization with ROCm, but VLLM_USE_TRITON_AWQ"
" is not set, enabling VLLM_USE_TRITON_AWQ.")
envs.VLLM_USE_TRITON_AWQ = True
@classmethod
def get_punica_wrapper(cls) -> str:
return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"
@classmethod
def get_current_memory_usage(cls,
device: Optional[torch.types.Device] = None
) -> float:
torch.cuda.reset_peak_memory_stats(device)
return torch.cuda.mem_get_info(device)[1] - torch.cuda.mem_get_info(
device)[0]
@classmethod
def get_device_communicator_cls(cls) -> str:
return "vllm.distributed.device_communicators.cuda_communicator.CudaCommunicator" # noqa
@classmethod
def supports_mx(cls) -> bool:
gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
return any(gfx in gcn_arch for gfx in ["gfx95"])
@classmethod
def supports_fp8(cls) -> bool:
gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
return any(gfx in gcn_arch for gfx in ['gfx94', 'gfx95', 'gfx12'])
@classmethod
def is_fp8_fnuz(cls) -> bool:
# only device 0 is checked, this assumes MI300 platforms are homogeneous
return 'gfx94' in torch.cuda.get_device_properties(0).gcnArchName
@classmethod
def fp8_dtype(cls) -> torch.dtype:
if cls.is_fp8_fnuz():
return torch.float8_e4m3fnuz
else:
return torch.float8_e4m3fn
@classmethod
def supports_v1(cls, model_config: "ModelConfig") -> bool:
# V1 support on AMD gpus is experimental
return True
@classmethod
def use_custom_allreduce(cls) -> bool:
# We only enable custom allreduce for MI300 series
gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
supported_archs = ['gfx94', 'gfx95']
return any(gfx in gcn_arch for gfx in supported_archs)
@classmethod
def get_cu_count(cls, device_id: int = 0) -> int:
return torch.cuda.get_device_properties(
device_id).multi_processor_count
@classmethod
def is_navi(cls) -> bool:
return 'gfx1' in torch.cuda.get_device_properties(0).gcnArchName
@classmethod
def get_piecewise_backend_cls(cls) -> str:
return "vllm.compilation.cuda_piecewise_backend.CUDAPiecewiseBackend" # noqa
@classmethod
def stateless_init_device_torch_dist_pg(
cls,
backend: str,
prefix_store: PrefixStore,
group_rank: int,
group_size: int,
timeout: timedelta,
) -> ProcessGroup:
assert is_nccl_available()
pg: ProcessGroup = ProcessGroup(
prefix_store,
group_rank,
group_size,
)
from torch.distributed.distributed_c10d import ProcessGroupNCCL
backend_options = ProcessGroupNCCL.Options()
backend_options._timeout = timeout
backend_class = ProcessGroupNCCL(prefix_store, group_rank, group_size,
backend_options)
backend_type = ProcessGroup.BackendType.NCCL
device = torch.device("cuda")
pg._set_default_backend(backend_type)
backend_class._set_sequence_number_for_group()
pg._register_backend(device, backend_type, backend_class)
return pg
@classmethod
def device_count(cls) -> int:
return cuda_device_count_stateless()
@classmethod
def is_kv_cache_dtype_supported(cls, kv_cache_dtype: str) -> bool:
return True