Signed-off-by: yewentao256 <zhyanwentao@126.com> Signed-off-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
1297 lines
53 KiB
Python
Executable File
1297 lines
53 KiB
Python
Executable File
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import hashlib
|
|
import json
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
from typing import TYPE_CHECKING, Any, Callable, Optional
|
|
|
|
if TYPE_CHECKING:
|
|
VLLM_HOST_IP: str = ""
|
|
VLLM_PORT: Optional[int] = None
|
|
VLLM_RPC_BASE_PATH: str = tempfile.gettempdir()
|
|
VLLM_USE_MODELSCOPE: bool = False
|
|
VLLM_RINGBUFFER_WARNING_INTERVAL: int = 60
|
|
VLLM_NCCL_SO_PATH: Optional[str] = None
|
|
LD_LIBRARY_PATH: Optional[str] = None
|
|
VLLM_USE_TRITON_FLASH_ATTN: bool = True
|
|
VLLM_V1_USE_PREFILL_DECODE_ATTENTION: bool = False
|
|
VLLM_USE_AITER_UNIFIED_ATTENTION: bool = False
|
|
VLLM_FLASH_ATTN_VERSION: Optional[int] = None
|
|
LOCAL_RANK: int = 0
|
|
CUDA_VISIBLE_DEVICES: Optional[str] = None
|
|
VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60
|
|
VLLM_API_KEY: Optional[str] = None
|
|
S3_ACCESS_KEY_ID: Optional[str] = None
|
|
S3_SECRET_ACCESS_KEY: Optional[str] = None
|
|
S3_ENDPOINT_URL: Optional[str] = None
|
|
VLLM_MODEL_REDIRECT_PATH: Optional[str] = None
|
|
VLLM_CACHE_ROOT: str = os.path.expanduser("~/.cache/vllm")
|
|
VLLM_CONFIG_ROOT: str = os.path.expanduser("~/.config/vllm")
|
|
VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai"
|
|
VLLM_NO_USAGE_STATS: bool = False
|
|
VLLM_DO_NOT_TRACK: bool = False
|
|
VLLM_USAGE_SOURCE: str = ""
|
|
VLLM_CONFIGURE_LOGGING: int = 1
|
|
VLLM_LOGGING_LEVEL: str = "INFO"
|
|
VLLM_LOGGING_PREFIX: str = ""
|
|
VLLM_LOGGING_CONFIG_PATH: Optional[str] = None
|
|
VLLM_LOGITS_PROCESSOR_THREADS: Optional[int] = None
|
|
VLLM_LOG_STATS_INTERVAL: float = 10.
|
|
VLLM_TRACE_FUNCTION: int = 0
|
|
VLLM_ATTENTION_BACKEND: Optional[str] = None
|
|
VLLM_USE_FLASHINFER_SAMPLER: Optional[bool] = None
|
|
VLLM_PP_LAYER_PARTITION: Optional[str] = None
|
|
VLLM_CPU_KVCACHE_SPACE: Optional[int] = 0
|
|
VLLM_CPU_OMP_THREADS_BIND: str = ""
|
|
VLLM_CPU_NUM_OF_RESERVED_CPU: Optional[int] = None
|
|
VLLM_CPU_MOE_PREPACK: bool = True
|
|
VLLM_CPU_SGL_KERNEL: bool = False
|
|
VLLM_XLA_CACHE_PATH: str = os.path.join(VLLM_CACHE_ROOT, "xla_cache")
|
|
VLLM_XLA_CHECK_RECOMPILATION: bool = False
|
|
VLLM_FUSED_MOE_CHUNK_SIZE: int = 64 * 1024
|
|
VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING: bool = True
|
|
VLLM_USE_RAY_SPMD_WORKER: bool = False
|
|
VLLM_USE_RAY_COMPILED_DAG: bool = False
|
|
VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE: str = "auto"
|
|
VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM: bool = False
|
|
VLLM_USE_RAY_WRAPPED_PP_COMM: bool = True
|
|
VLLM_XLA_USE_SPMD: bool = False
|
|
VLLM_WORKER_MULTIPROC_METHOD: str = "fork"
|
|
VLLM_ASSETS_CACHE: str = os.path.join(VLLM_CACHE_ROOT, "assets")
|
|
VLLM_IMAGE_FETCH_TIMEOUT: int = 5
|
|
VLLM_VIDEO_FETCH_TIMEOUT: int = 30
|
|
VLLM_AUDIO_FETCH_TIMEOUT: int = 10
|
|
VLLM_MEDIA_LOADING_THREAD_COUNT: int = 8
|
|
VLLM_MAX_AUDIO_CLIP_FILESIZE_MB: int = 25
|
|
VLLM_VIDEO_LOADER_BACKEND: str = "opencv"
|
|
VLLM_MM_INPUT_CACHE_GIB: int = 4
|
|
VLLM_TARGET_DEVICE: str = "cuda"
|
|
MAX_JOBS: Optional[str] = None
|
|
NVCC_THREADS: Optional[str] = None
|
|
VLLM_USE_PRECOMPILED: bool = False
|
|
VLLM_DOCKER_BUILD_CONTEXT: bool = False
|
|
VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL: bool = False
|
|
VLLM_KEEP_ALIVE_ON_ENGINE_DEATH: bool = False
|
|
CMAKE_BUILD_TYPE: Optional[str] = None
|
|
VERBOSE: bool = False
|
|
VLLM_ALLOW_LONG_MAX_MODEL_LEN: bool = False
|
|
VLLM_RPC_TIMEOUT: int = 10000 # ms
|
|
VLLM_HTTP_TIMEOUT_KEEP_ALIVE: int = 5 # seconds
|
|
VLLM_PLUGINS: Optional[list[str]] = None
|
|
VLLM_LORA_RESOLVER_CACHE_DIR: Optional[str] = None
|
|
VLLM_TORCH_PROFILER_DIR: Optional[str] = None
|
|
VLLM_TORCH_PROFILER_RECORD_SHAPES: bool = False
|
|
VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY: bool = False
|
|
VLLM_TORCH_PROFILER_WITH_STACK: bool = True
|
|
VLLM_TORCH_PROFILER_WITH_FLOPS: bool = False
|
|
VLLM_USE_TRITON_AWQ: bool = False
|
|
VLLM_ALLOW_RUNTIME_LORA_UPDATING: bool = False
|
|
VLLM_SKIP_P2P_CHECK: bool = False
|
|
VLLM_DISABLED_KERNELS: list[str] = []
|
|
VLLM_USE_V1: bool = True
|
|
VLLM_ROCM_USE_AITER: bool = False
|
|
VLLM_ROCM_USE_AITER_PAGED_ATTN: bool = False
|
|
VLLM_ROCM_USE_AITER_LINEAR: bool = True
|
|
VLLM_ROCM_USE_AITER_MOE: bool = True
|
|
VLLM_ROCM_USE_AITER_RMSNORM: bool = True
|
|
VLLM_ROCM_USE_AITER_MLA: bool = True
|
|
VLLM_ROCM_USE_AITER_MHA: bool = True
|
|
VLLM_ROCM_USE_SKINNY_GEMM: bool = True
|
|
VLLM_ROCM_FP8_PADDING: bool = True
|
|
VLLM_ROCM_MOE_PADDING: bool = True
|
|
VLLM_ROCM_CUSTOM_PAGED_ATTN: bool = True
|
|
VLLM_ENABLE_V1_MULTIPROCESSING: bool = True
|
|
VLLM_LOG_BATCHSIZE_INTERVAL: float = -1
|
|
VLLM_DISABLE_COMPILE_CACHE: bool = False
|
|
Q_SCALE_CONSTANT: int = 200
|
|
K_SCALE_CONSTANT: int = 200
|
|
V_SCALE_CONSTANT: int = 100
|
|
VLLM_SERVER_DEV_MODE: bool = False
|
|
VLLM_V1_OUTPUT_PROC_CHUNK_SIZE: int = 128
|
|
VLLM_MLA_DISABLE: bool = False
|
|
VLLM_RAY_PER_WORKER_GPUS: float = 1.0
|
|
VLLM_RAY_BUNDLE_INDICES: str = ""
|
|
VLLM_CUDART_SO_PATH: Optional[str] = None
|
|
VLLM_DP_RANK: int = 0
|
|
VLLM_DP_RANK_LOCAL: int = -1
|
|
VLLM_DP_SIZE: int = 1
|
|
VLLM_DP_MASTER_IP: str = ""
|
|
VLLM_DP_MASTER_PORT: int = 0
|
|
VLLM_MOE_DP_CHUNK_SIZE: int = 256
|
|
VLLM_RANDOMIZE_DP_DUMMY_INPUTS: bool = False
|
|
VLLM_MARLIN_USE_ATOMIC_ADD: bool = False
|
|
VLLM_MXFP4_USE_MARLIN: Optional[bool] = None
|
|
VLLM_V0_USE_OUTLINES_CACHE: bool = False
|
|
VLLM_V1_USE_OUTLINES_CACHE: bool = False
|
|
VLLM_TPU_BUCKET_PADDING_GAP: int = 0
|
|
VLLM_TPU_MOST_MODEL_LEN: Optional[int] = None
|
|
VLLM_TPU_USING_PATHWAYS: bool = False
|
|
VLLM_USE_DEEP_GEMM: bool = False
|
|
VLLM_USE_DEEP_GEMM_E8M0: bool = True
|
|
VLLM_USE_DEEP_GEMM_E8M0_HOPPER: bool = False
|
|
VLLM_SKIP_DEEP_GEMM_WARMUP: bool = False
|
|
VLLM_USE_FUSED_MOE_GROUPED_TOPK: bool = True
|
|
VLLM_USE_FLASHINFER_MOE_FP8: bool = False
|
|
VLLM_USE_FLASHINFER_MOE_FP4: bool = False
|
|
VLLM_FLASHINFER_MOE_BACKEND: str = "throughput"
|
|
VLLM_XGRAMMAR_CACHE_MB: int = 0
|
|
VLLM_MSGPACK_ZERO_COPY_THRESHOLD: int = 256
|
|
VLLM_ALLOW_INSECURE_SERIALIZATION: bool = False
|
|
VLLM_NIXL_SIDE_CHANNEL_HOST: str = "localhost"
|
|
VLLM_NIXL_SIDE_CHANNEL_PORT: int = 5557
|
|
VLLM_ALL2ALL_BACKEND: str = "naive"
|
|
VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE: int = 163840
|
|
VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS: int = 1
|
|
VLLM_SLEEP_WHEN_IDLE: bool = False
|
|
VLLM_MQ_MAX_CHUNK_BYTES_MB: int = 16
|
|
VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS: int = 300
|
|
VLLM_KV_CACHE_LAYOUT: Optional[str] = None
|
|
VLLM_COMPUTE_NANS_IN_LOGITS: bool = False
|
|
VLLM_USE_NVFP4_CT_EMULATIONS: bool = False
|
|
VLLM_ROCM_QUICK_REDUCE_QUANTIZATION: str = "NONE"
|
|
VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16: bool = True
|
|
VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB: Optional[int] = None
|
|
VLLM_NIXL_ABORT_REQUEST_TIMEOUT: int = 120
|
|
VLLM_USE_CUDNN_PREFILL: bool = False
|
|
VLLM_ENABLE_CUDAGRAPH_GC: bool = False
|
|
VLLM_LOOPBACK_IP: str = ""
|
|
VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE: bool = False
|
|
VLLM_ENABLE_RESPONSES_API_STORE: bool = False
|
|
VLLM_USE_TRTLLM_ATTENTION: Optional[str] = None
|
|
VLLM_HAS_FLASHINFER_CUBIN: bool = False
|
|
VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8: bool = False
|
|
VLLM_USE_FLASHINFER_MOE_MXFP4_BF16: bool = False
|
|
VLLM_ALLREDUCE_USE_SYMM_MEM: bool = False
|
|
VLLM_TUNED_CONFIG_FOLDER: Optional[str] = None
|
|
VLLM_DISABLE_PAD_FOR_CUDAGRAPH: bool = False
|
|
|
|
|
|
def get_default_cache_root():
|
|
return os.getenv(
|
|
"XDG_CACHE_HOME",
|
|
os.path.join(os.path.expanduser("~"), ".cache"),
|
|
)
|
|
|
|
|
|
def get_default_config_root():
|
|
return os.getenv(
|
|
"XDG_CONFIG_HOME",
|
|
os.path.join(os.path.expanduser("~"), ".config"),
|
|
)
|
|
|
|
|
|
def maybe_convert_int(value: Optional[str]) -> Optional[int]:
|
|
if value is None:
|
|
return None
|
|
return int(value)
|
|
|
|
|
|
def maybe_convert_bool(value: Optional[str]) -> Optional[bool]:
|
|
if value is None:
|
|
return None
|
|
return bool(int(value))
|
|
|
|
|
|
def get_vllm_port() -> Optional[int]:
|
|
"""Get the port from VLLM_PORT environment variable.
|
|
|
|
Returns:
|
|
The port number as an integer if VLLM_PORT is set, None otherwise.
|
|
|
|
Raises:
|
|
ValueError: If VLLM_PORT is a URI, suggest k8s service discovery issue.
|
|
"""
|
|
if 'VLLM_PORT' not in os.environ:
|
|
return None
|
|
|
|
port = os.getenv('VLLM_PORT', '0')
|
|
|
|
try:
|
|
return int(port)
|
|
except ValueError as err:
|
|
from urllib.parse import urlparse
|
|
parsed = urlparse(port)
|
|
if parsed.scheme:
|
|
raise ValueError(
|
|
f"VLLM_PORT '{port}' appears to be a URI. "
|
|
"This may be caused by a Kubernetes service discovery issue,"
|
|
"check the warning in: https://docs.vllm.ai/en/stable/serving/env_vars.html"
|
|
) from None
|
|
raise ValueError(
|
|
f"VLLM_PORT '{port}' must be a valid integer") from err
|
|
|
|
|
|
# The begin-* and end* here are used by the documentation generator
|
|
# to extract the used env vars.
|
|
|
|
# --8<-- [start:env-vars-definition]
|
|
|
|
environment_variables: dict[str, Callable[[], Any]] = {
|
|
|
|
# ================== Installation Time Env Vars ==================
|
|
|
|
# Target device of vLLM, supporting [cuda (by default),
|
|
# rocm, neuron, cpu]
|
|
"VLLM_TARGET_DEVICE":
|
|
lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda").lower(),
|
|
|
|
# Maximum number of compilation jobs to run in parallel.
|
|
# By default this is the number of CPUs
|
|
"MAX_JOBS":
|
|
lambda: os.getenv("MAX_JOBS", None),
|
|
|
|
# Number of threads to use for nvcc
|
|
# By default this is 1.
|
|
# If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU.
|
|
"NVCC_THREADS":
|
|
lambda: os.getenv("NVCC_THREADS", None),
|
|
|
|
# If set, vllm will use precompiled binaries (*.so)
|
|
"VLLM_USE_PRECOMPILED":
|
|
lambda: os.environ.get("VLLM_USE_PRECOMPILED", "").strip().lower() in
|
|
("1", "true") or bool(os.environ.get("VLLM_PRECOMPILED_WHEEL_LOCATION")),
|
|
|
|
# Used to mark that setup.py is running in a Docker build context,
|
|
# in order to force the use of precompiled binaries.
|
|
"VLLM_DOCKER_BUILD_CONTEXT":
|
|
lambda: os.environ.get("VLLM_DOCKER_BUILD_CONTEXT", "").strip().lower() in
|
|
("1", "true"),
|
|
|
|
# Whether to force using nightly wheel in python build.
|
|
# This is used for testing the nightly wheel in python build.
|
|
"VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL":
|
|
lambda: bool(int(os.getenv("VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL", "0"))
|
|
),
|
|
|
|
# CMake build type
|
|
# If not set, defaults to "Debug" or "RelWithDebInfo"
|
|
# Available options: "Debug", "Release", "RelWithDebInfo"
|
|
"CMAKE_BUILD_TYPE":
|
|
lambda: os.getenv("CMAKE_BUILD_TYPE"),
|
|
|
|
# If set, vllm will print verbose logs during installation
|
|
"VERBOSE":
|
|
lambda: bool(int(os.getenv('VERBOSE', '0'))),
|
|
|
|
# Root directory for vLLM configuration files
|
|
# Defaults to `~/.config/vllm` unless `XDG_CONFIG_HOME` is set
|
|
# Note that this not only affects how vllm finds its configuration files
|
|
# during runtime, but also affects how vllm installs its configuration
|
|
# files during **installation**.
|
|
"VLLM_CONFIG_ROOT":
|
|
lambda: os.path.expanduser(
|
|
os.getenv(
|
|
"VLLM_CONFIG_ROOT",
|
|
os.path.join(get_default_config_root(), "vllm"),
|
|
)),
|
|
|
|
# ================== Runtime Env Vars ==================
|
|
|
|
# Root directory for vLLM cache files
|
|
# Defaults to `~/.cache/vllm` unless `XDG_CACHE_HOME` is set
|
|
"VLLM_CACHE_ROOT":
|
|
lambda: os.path.expanduser(
|
|
os.getenv(
|
|
"VLLM_CACHE_ROOT",
|
|
os.path.join(get_default_cache_root(), "vllm"),
|
|
)),
|
|
|
|
# used in distributed environment to determine the ip address
|
|
# of the current node, when the node has multiple network interfaces.
|
|
# If you are using multi-node inference, you should set this differently
|
|
# on each node.
|
|
'VLLM_HOST_IP':
|
|
lambda: os.getenv('VLLM_HOST_IP', ""),
|
|
|
|
# used in distributed environment to manually set the communication port
|
|
# Note: if VLLM_PORT is set, and some code asks for multiple ports, the
|
|
# VLLM_PORT will be used as the first port, and the rest will be generated
|
|
# by incrementing the VLLM_PORT value.
|
|
'VLLM_PORT':
|
|
get_vllm_port,
|
|
|
|
# path used for ipc when the frontend api server is running in
|
|
# multi-processing mode to communicate with the backend engine process.
|
|
'VLLM_RPC_BASE_PATH':
|
|
lambda: os.getenv('VLLM_RPC_BASE_PATH', tempfile.gettempdir()),
|
|
|
|
# If true, will load models from ModelScope instead of Hugging Face Hub.
|
|
# note that the value is true or false, not numbers
|
|
"VLLM_USE_MODELSCOPE":
|
|
lambda: os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true",
|
|
|
|
# Interval in seconds to log a warning message when the ring buffer is full
|
|
"VLLM_RINGBUFFER_WARNING_INTERVAL":
|
|
lambda: int(os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")),
|
|
|
|
# path to cudatoolkit home directory, under which should be bin, include,
|
|
# and lib directories.
|
|
"CUDA_HOME":
|
|
lambda: os.environ.get("CUDA_HOME", None),
|
|
|
|
# Path to the NCCL library file. It is needed because nccl>=2.19 brought
|
|
# by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234
|
|
"VLLM_NCCL_SO_PATH":
|
|
lambda: os.environ.get("VLLM_NCCL_SO_PATH", None),
|
|
|
|
# when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl
|
|
# library file in the locations specified by `LD_LIBRARY_PATH`
|
|
"LD_LIBRARY_PATH":
|
|
lambda: os.environ.get("LD_LIBRARY_PATH", None),
|
|
|
|
# flag to control if vllm should use triton flash attention
|
|
"VLLM_USE_TRITON_FLASH_ATTN":
|
|
lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in
|
|
("true", "1")),
|
|
|
|
# Use separate prefill and decode kernels for V1 attention instead of
|
|
# the unified triton kernel.
|
|
"VLLM_V1_USE_PREFILL_DECODE_ATTENTION":
|
|
lambda:
|
|
(os.getenv("VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "False").lower() in
|
|
("true", "1")),
|
|
|
|
# Use AITER triton unified attention for V1 attention
|
|
"VLLM_USE_AITER_UNIFIED_ATTENTION":
|
|
lambda:
|
|
(os.getenv("VLLM_USE_AITER_UNIFIED_ATTENTION", "False").lower() in
|
|
("true", "1")),
|
|
|
|
# Force vllm to use a specific flash-attention version (2 or 3), only valid
|
|
# when using the flash-attention backend.
|
|
"VLLM_FLASH_ATTN_VERSION":
|
|
lambda: maybe_convert_int(os.environ.get("VLLM_FLASH_ATTN_VERSION", None)),
|
|
|
|
# Internal flag to enable Dynamo fullgraph capture
|
|
"VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE":
|
|
lambda: bool(
|
|
os.environ.get("VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE", "1") != "0"),
|
|
|
|
# Feature flag to enable/disable Inductor standalone compile.
|
|
# In torch <= 2.7 we ignore this flag; in torch >= 2.8 this is
|
|
# enabled by default.
|
|
"VLLM_USE_STANDALONE_COMPILE":
|
|
lambda: os.environ.get("VLLM_USE_STANDALONE_COMPILE", "1") == "1",
|
|
|
|
# local rank of the process in the distributed setting, used to determine
|
|
# the GPU device id
|
|
"LOCAL_RANK":
|
|
lambda: int(os.environ.get("LOCAL_RANK", "0")),
|
|
|
|
# used to control the visible devices in the distributed setting
|
|
"CUDA_VISIBLE_DEVICES":
|
|
lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),
|
|
|
|
# timeout for each iteration in the engine
|
|
"VLLM_ENGINE_ITERATION_TIMEOUT_S":
|
|
lambda: int(os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")),
|
|
|
|
# API key for vLLM API server
|
|
"VLLM_API_KEY":
|
|
lambda: os.environ.get("VLLM_API_KEY", None),
|
|
|
|
# Whether to log responses from API Server for debugging
|
|
"VLLM_DEBUG_LOG_API_SERVER_RESPONSE":
|
|
lambda: os.environ.get("VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False"
|
|
).lower() == "true",
|
|
|
|
# S3 access information, used for tensorizer to load model from S3
|
|
"S3_ACCESS_KEY_ID":
|
|
lambda: os.environ.get("S3_ACCESS_KEY_ID", None),
|
|
"S3_SECRET_ACCESS_KEY":
|
|
lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None),
|
|
"S3_ENDPOINT_URL":
|
|
lambda: os.environ.get("S3_ENDPOINT_URL", None),
|
|
|
|
# Usage stats collection
|
|
"VLLM_USAGE_STATS_SERVER":
|
|
lambda: os.environ.get("VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"),
|
|
"VLLM_NO_USAGE_STATS":
|
|
lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1",
|
|
"VLLM_DO_NOT_TRACK":
|
|
lambda: (os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get(
|
|
"DO_NOT_TRACK", None) or "0") == "1",
|
|
"VLLM_USAGE_SOURCE":
|
|
lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"),
|
|
|
|
# Logging configuration
|
|
# If set to 0, vllm will not configure logging
|
|
# If set to 1, vllm will configure logging using the default configuration
|
|
# or the configuration file specified by VLLM_LOGGING_CONFIG_PATH
|
|
"VLLM_CONFIGURE_LOGGING":
|
|
lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")),
|
|
"VLLM_LOGGING_CONFIG_PATH":
|
|
lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"),
|
|
|
|
# this is used for configuring the default logging level
|
|
"VLLM_LOGGING_LEVEL":
|
|
lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO").upper(),
|
|
|
|
# if set, VLLM_LOGGING_PREFIX will be prepended to all log messages
|
|
"VLLM_LOGGING_PREFIX":
|
|
lambda: os.getenv("VLLM_LOGGING_PREFIX", ""),
|
|
|
|
# if set, vllm will call logits processors in a thread pool with this many
|
|
# threads. This is useful when using custom logits processors that either
|
|
# (a) launch additional CUDA kernels or (b) do significant CPU-bound work
|
|
# while not holding the python GIL, or both.
|
|
"VLLM_LOGITS_PROCESSOR_THREADS":
|
|
lambda: int(os.getenv("VLLM_LOGITS_PROCESSOR_THREADS", "0"))
|
|
if "VLLM_LOGITS_PROCESSOR_THREADS" in os.environ else None,
|
|
|
|
# If set, vllm will log stats at this interval in seconds
|
|
# If not set, vllm will log stats every 10 seconds.
|
|
"VLLM_LOG_STATS_INTERVAL":
|
|
lambda: val if (val := float(os.getenv("VLLM_LOG_STATS_INTERVAL", "10.")))
|
|
> 0. else 10.,
|
|
|
|
# Trace function calls
|
|
# If set to 1, vllm will trace function calls
|
|
# Useful for debugging
|
|
"VLLM_TRACE_FUNCTION":
|
|
lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")),
|
|
|
|
# Backend for attention computation
|
|
# Available options:
|
|
# - "TORCH_SDPA": use torch.nn.MultiheadAttention
|
|
# - "FLASH_ATTN": use FlashAttention
|
|
# - "XFORMERS": use XFormers
|
|
# - "ROCM_FLASH": use ROCmFlashAttention
|
|
# - "FLASHINFER": use flashinfer
|
|
# - "FLASHMLA": use FlashMLA
|
|
"VLLM_ATTENTION_BACKEND":
|
|
lambda: os.getenv("VLLM_ATTENTION_BACKEND", None),
|
|
|
|
# If set, vllm will use flashinfer sampler
|
|
"VLLM_USE_FLASHINFER_SAMPLER":
|
|
lambda: bool(int(os.environ["VLLM_USE_FLASHINFER_SAMPLER"]))
|
|
if "VLLM_USE_FLASHINFER_SAMPLER" in os.environ else None,
|
|
|
|
# Pipeline stage partition strategy
|
|
"VLLM_PP_LAYER_PARTITION":
|
|
lambda: os.getenv("VLLM_PP_LAYER_PARTITION", None),
|
|
|
|
# (CPU backend only) CPU key-value cache space.
|
|
# default is None and will be set as 4 GB
|
|
"VLLM_CPU_KVCACHE_SPACE":
|
|
lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0"))
|
|
if "VLLM_CPU_KVCACHE_SPACE" in os.environ else None,
|
|
|
|
# (CPU backend only) CPU core ids bound by OpenMP threads, e.g., "0-31",
|
|
# "0,1,2", "0-31,33". CPU cores of different ranks are separated by '|'.
|
|
"VLLM_CPU_OMP_THREADS_BIND":
|
|
lambda: os.getenv("VLLM_CPU_OMP_THREADS_BIND", "auto"),
|
|
|
|
# (CPU backend only) CPU cores not used by OMP threads .
|
|
# Those CPU cores will not be used by OMP threads of a rank.
|
|
"VLLM_CPU_NUM_OF_RESERVED_CPU":
|
|
lambda: int(os.getenv("VLLM_CPU_NUM_OF_RESERVED_CPU", "0"))
|
|
if "VLLM_CPU_NUM_OF_RESERVED_CPU" in os.environ else None,
|
|
|
|
# (CPU backend only) whether to use prepack for MoE layer. This will be
|
|
# passed to ipex.llm.modules.GatedMLPMOE. On unsupported CPUs, you might
|
|
# need to set this to "0" (False).
|
|
"VLLM_CPU_MOE_PREPACK":
|
|
lambda: bool(int(os.getenv("VLLM_CPU_MOE_PREPACK", "1"))),
|
|
|
|
# (CPU backend only) whether to use SGL kernels, optimized for small batch.
|
|
"VLLM_CPU_SGL_KERNEL":
|
|
lambda: bool(int(os.getenv("VLLM_CPU_SGL_KERNEL", "0"))),
|
|
|
|
# If the env var is set, then all workers will execute as separate
|
|
# processes from the engine, and we use the same mechanism to trigger
|
|
# execution on all workers.
|
|
# Run vLLM with VLLM_USE_RAY_SPMD_WORKER=1 to enable it.
|
|
"VLLM_USE_RAY_SPMD_WORKER":
|
|
lambda: bool(int(os.getenv("VLLM_USE_RAY_SPMD_WORKER", "0"))),
|
|
|
|
# If the env var is set, it uses the Ray's Compiled Graph
|
|
# (previously known as ADAG) API which optimizes the
|
|
# control plane overhead.
|
|
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
|
|
# Note that this variable is set to 1 in V1 by default
|
|
# when ray distributed executor is used.
|
|
"VLLM_USE_RAY_COMPILED_DAG":
|
|
lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG", "0"))),
|
|
|
|
# If the env var is set, Ray Compiled Graph uses the specified
|
|
# channel type to communicate between workers belonging to
|
|
# different pipeline-parallel stages.
|
|
# Available options:
|
|
# - "auto": use the default channel type
|
|
# - "nccl": use NCCL for communication
|
|
# - "shm": use shared memory and gRPC for communication
|
|
# This flag is ignored if VLLM_USE_RAY_COMPILED_DAG is not set.
|
|
"VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE":
|
|
lambda: os.getenv("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "auto"),
|
|
|
|
# If the env var is set, it enables GPU communication overlap
|
|
# (experimental feature) in Ray's Compiled Graph. This flag is ignored if
|
|
# VLLM_USE_RAY_COMPILED_DAG is not set.
|
|
"VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM":
|
|
lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM", "0"))
|
|
),
|
|
|
|
# If the env var is set, it uses a Ray Communicator wrapping
|
|
# vLLM's pipeline parallelism communicator to interact with Ray's
|
|
# Compiled Graph. Otherwise, it uses Ray's NCCL communicator.
|
|
# This flag is ignored if VLLM_USE_RAY_COMPILED_DAG is not set.
|
|
"VLLM_USE_RAY_WRAPPED_PP_COMM":
|
|
lambda: bool(int(os.getenv("VLLM_USE_RAY_WRAPPED_PP_COMM", "1"))),
|
|
|
|
# Use dedicated multiprocess context for workers.
|
|
# Both spawn and fork work
|
|
"VLLM_WORKER_MULTIPROC_METHOD":
|
|
lambda: os.getenv("VLLM_WORKER_MULTIPROC_METHOD", "fork"),
|
|
|
|
# Path to the cache for storing downloaded assets
|
|
"VLLM_ASSETS_CACHE":
|
|
lambda: os.path.expanduser(
|
|
os.getenv(
|
|
"VLLM_ASSETS_CACHE",
|
|
os.path.join(get_default_cache_root(), "vllm", "assets"),
|
|
)),
|
|
|
|
# Timeout for fetching images when serving multimodal models
|
|
# Default is 5 seconds
|
|
"VLLM_IMAGE_FETCH_TIMEOUT":
|
|
lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")),
|
|
|
|
# Timeout for fetching videos when serving multimodal models
|
|
# Default is 30 seconds
|
|
"VLLM_VIDEO_FETCH_TIMEOUT":
|
|
lambda: int(os.getenv("VLLM_VIDEO_FETCH_TIMEOUT", "30")),
|
|
|
|
# Timeout for fetching audio when serving multimodal models
|
|
# Default is 10 seconds
|
|
"VLLM_AUDIO_FETCH_TIMEOUT":
|
|
lambda: int(os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "10")),
|
|
|
|
# Max number of workers for the thread pool handling
|
|
# media bytes loading. Set to 1 to disable parallel processing.
|
|
# Default is 8
|
|
"VLLM_MEDIA_LOADING_THREAD_COUNT":
|
|
lambda: int(os.getenv("VLLM_MEDIA_LOADING_THREAD_COUNT", "8")),
|
|
|
|
# Maximum filesize in MB for a single audio file when processing
|
|
# speech-to-text requests. Files larger than this will be rejected.
|
|
# Default is 25 MB
|
|
"VLLM_MAX_AUDIO_CLIP_FILESIZE_MB":
|
|
lambda: int(os.getenv("VLLM_MAX_AUDIO_CLIP_FILESIZE_MB", "25")),
|
|
|
|
# Backend for Video IO
|
|
# - "opencv": Default backend that uses OpenCV stream buffered backend.
|
|
#
|
|
# Custom backend implementations can be registered
|
|
# via `@VIDEO_LOADER_REGISTRY.register("my_custom_video_loader")` and
|
|
# imported at runtime.
|
|
# If a non-existing backend is used, an AssertionError will be thrown.
|
|
"VLLM_VIDEO_LOADER_BACKEND":
|
|
lambda: os.getenv("VLLM_VIDEO_LOADER_BACKEND", "opencv"),
|
|
|
|
# [DEPRECATED] Cache size (in GiB per process) for multimodal input cache
|
|
# Default is 4 GiB per API process + 4 GiB per engine core process
|
|
"VLLM_MM_INPUT_CACHE_GIB":
|
|
lambda: int(os.getenv("VLLM_MM_INPUT_CACHE_GIB", "4")),
|
|
|
|
# Path to the XLA persistent cache directory.
|
|
# Only used for XLA devices such as TPUs.
|
|
"VLLM_XLA_CACHE_PATH":
|
|
lambda: os.path.expanduser(
|
|
os.getenv(
|
|
"VLLM_XLA_CACHE_PATH",
|
|
os.path.join(get_default_cache_root(), "vllm", "xla_cache"),
|
|
)),
|
|
|
|
# If set, assert on XLA recompilation after each execution step.
|
|
"VLLM_XLA_CHECK_RECOMPILATION":
|
|
lambda: bool(int(os.getenv("VLLM_XLA_CHECK_RECOMPILATION", "0"))),
|
|
|
|
# Enable SPMD mode for TPU backend.
|
|
"VLLM_XLA_USE_SPMD":
|
|
lambda: bool(int(os.getenv("VLLM_XLA_USE_SPMD", "0"))),
|
|
"VLLM_FUSED_MOE_CHUNK_SIZE":
|
|
lambda: int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768")),
|
|
# Control whether to use fused MoE activation chunking. Current chunking
|
|
# logic is incompatible with torch.compile and causes IMA. See issue
|
|
# https://github.com/vllm-project/vllm/issues/19631.
|
|
"VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING":
|
|
lambda: bool(
|
|
int(os.getenv("VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING", "1"))),
|
|
|
|
# If set, the OpenAI API server will stay alive even after the underlying
|
|
# AsyncLLMEngine errors and stops serving requests
|
|
"VLLM_KEEP_ALIVE_ON_ENGINE_DEATH":
|
|
lambda: bool(os.getenv("VLLM_KEEP_ALIVE_ON_ENGINE_DEATH", 0)),
|
|
|
|
# If the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN is set, it allows
|
|
# the user to specify a max sequence length greater than
|
|
# the max length derived from the model's config.json.
|
|
# To enable this, set VLLM_ALLOW_LONG_MAX_MODEL_LEN=1.
|
|
"VLLM_ALLOW_LONG_MAX_MODEL_LEN":
|
|
lambda:
|
|
(os.environ.get("VLLM_ALLOW_LONG_MAX_MODEL_LEN", "0").strip().lower() in
|
|
("1", "true")),
|
|
|
|
# If set, forces FP8 Marlin to be used for FP8 quantization regardless
|
|
# of the hardware support for FP8 compute.
|
|
"VLLM_TEST_FORCE_FP8_MARLIN":
|
|
lambda:
|
|
(os.environ.get("VLLM_TEST_FORCE_FP8_MARLIN", "0").strip().lower() in
|
|
("1", "true")),
|
|
"VLLM_TEST_FORCE_LOAD_FORMAT":
|
|
lambda: os.getenv("VLLM_TEST_FORCE_LOAD_FORMAT", "dummy"),
|
|
|
|
# Time in ms for the zmq client to wait for a response from the backend
|
|
# server for simple data operations
|
|
"VLLM_RPC_TIMEOUT":
|
|
lambda: int(os.getenv("VLLM_RPC_TIMEOUT", "10000")),
|
|
|
|
# Timeout in seconds for keeping HTTP connections alive in API server
|
|
"VLLM_HTTP_TIMEOUT_KEEP_ALIVE":
|
|
lambda: int(os.environ.get("VLLM_HTTP_TIMEOUT_KEEP_ALIVE", "5")),
|
|
|
|
# a list of plugin names to load, separated by commas.
|
|
# if this is not set, it means all plugins will be loaded
|
|
# if this is set to an empty string, no plugins will be loaded
|
|
"VLLM_PLUGINS":
|
|
lambda: None if "VLLM_PLUGINS" not in os.environ else os.environ[
|
|
"VLLM_PLUGINS"].split(","),
|
|
|
|
# a local directory to look in for unrecognized LoRA adapters.
|
|
# only works if plugins are enabled and
|
|
# VLLM_ALLOW_RUNTIME_LORA_UPDATING is enabled.
|
|
"VLLM_LORA_RESOLVER_CACHE_DIR":
|
|
lambda: os.getenv("VLLM_LORA_RESOLVER_CACHE_DIR", None),
|
|
|
|
# Enables torch profiler if set.
|
|
# Both AsyncLLM's CPU traces as well as workers'
|
|
# traces (CPU & GPU) will be saved under this directory.
|
|
# Note that it must be an absolute path.
|
|
"VLLM_TORCH_PROFILER_DIR":
|
|
lambda: (None if os.getenv("VLLM_TORCH_PROFILER_DIR", None) is None else os
|
|
.path.abspath(os.path.expanduser(os.getenv(
|
|
"VLLM_TORCH_PROFILER_DIR", ".")))),
|
|
|
|
# Enable torch profiler to record shapes if set
|
|
# VLLM_TORCH_PROFILER_RECORD_SHAPES=1. If not set, torch profiler will
|
|
# not record shapes.
|
|
"VLLM_TORCH_PROFILER_RECORD_SHAPES":
|
|
lambda: bool(os.getenv("VLLM_TORCH_PROFILER_RECORD_SHAPES", "0") != "0"),
|
|
|
|
# Enable torch profiler to profile memory if set
|
|
# VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY=1. If not set, torch profiler
|
|
# will not profile memory.
|
|
"VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY":
|
|
lambda: bool(
|
|
os.getenv("VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY", "0") != "0"),
|
|
|
|
# Enable torch profiler to profile stack if set
|
|
# VLLM_TORCH_PROFILER_WITH_STACK=1. If not set, torch profiler WILL
|
|
# profile stack by default.
|
|
"VLLM_TORCH_PROFILER_WITH_STACK":
|
|
lambda: bool(os.getenv("VLLM_TORCH_PROFILER_WITH_STACK", "1") != "0"),
|
|
|
|
# Enable torch profiler to profile flops if set
|
|
# VLLM_TORCH_PROFILER_WITH_FLOPS=1. If not set, torch profiler will
|
|
# not profile flops.
|
|
"VLLM_TORCH_PROFILER_WITH_FLOPS":
|
|
lambda: bool(os.getenv("VLLM_TORCH_PROFILER_WITH_FLOPS", "0") != "0"),
|
|
|
|
# If set, vLLM will use Triton implementations of AWQ.
|
|
"VLLM_USE_TRITON_AWQ":
|
|
lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))),
|
|
|
|
# If set, allow loading or unloading lora adapters in runtime,
|
|
"VLLM_ALLOW_RUNTIME_LORA_UPDATING":
|
|
lambda:
|
|
(os.environ.get("VLLM_ALLOW_RUNTIME_LORA_UPDATING", "0").strip().lower() in
|
|
("1", "true")),
|
|
|
|
# We assume drivers can report p2p status correctly.
|
|
# If the program hangs when using custom allreduce,
|
|
# potantially caused by a bug in the driver (535 series),
|
|
# if might be helpful to set VLLM_SKIP_P2P_CHECK=0
|
|
# so that vLLM can verify if p2p is actually working.
|
|
# See https://github.com/vllm-project/vllm/blob/a9b15c606fea67a072416ea0ea115261a2756058/vllm/distributed/device_communicators/custom_all_reduce_utils.py#L101-L108 for details. # noqa
|
|
"VLLM_SKIP_P2P_CHECK":
|
|
lambda: os.getenv("VLLM_SKIP_P2P_CHECK", "1") == "1",
|
|
|
|
# List of quantization kernels that should be disabled, used for testing
|
|
# and performance comparisons. Currently only affects MPLinearKernel
|
|
# selection
|
|
# (kernels: MacheteLinearKernel, MarlinLinearKernel, ExllamaLinearKernel)
|
|
"VLLM_DISABLED_KERNELS":
|
|
lambda: [] if "VLLM_DISABLED_KERNELS" not in os.environ else os.environ[
|
|
"VLLM_DISABLED_KERNELS"].split(","),
|
|
|
|
# If set, use the V1 code path.
|
|
"VLLM_USE_V1":
|
|
lambda: bool(int(os.getenv("VLLM_USE_V1", "1"))),
|
|
|
|
# Disable aiter ops unless specifically enabled.
|
|
# Acts as a parent switch to enable the rest of the other operations.
|
|
"VLLM_ROCM_USE_AITER":
|
|
lambda: (os.getenv("VLLM_ROCM_USE_AITER", "False").lower() in
|
|
("true", "1")),
|
|
|
|
# Whether to use aiter paged attention.
|
|
# By default is disabled.
|
|
"VLLM_ROCM_USE_AITER_PAGED_ATTN":
|
|
lambda: (os.getenv("VLLM_ROCM_USE_AITER_PAGED_ATTN", "False").lower() in
|
|
("true", "1")),
|
|
|
|
# use aiter linear op if aiter ops are enabled
|
|
# The following list of related ops
|
|
# - scaled_mm (per-tensor / rowwise)
|
|
"VLLM_ROCM_USE_AITER_LINEAR":
|
|
lambda: (os.getenv("VLLM_ROCM_USE_AITER_LINEAR", "True").lower() in
|
|
("true", "1")),
|
|
|
|
# Whether to use aiter moe ops.
|
|
# By default is enabled.
|
|
"VLLM_ROCM_USE_AITER_MOE":
|
|
lambda: (os.getenv("VLLM_ROCM_USE_AITER_MOE", "True").lower() in
|
|
("true", "1")),
|
|
|
|
# use aiter rms norm op if aiter ops are enabled.
|
|
"VLLM_ROCM_USE_AITER_RMSNORM":
|
|
lambda: (os.getenv("VLLM_ROCM_USE_AITER_RMSNORM", "True").lower() in
|
|
("true", "1")),
|
|
|
|
# Whether to use aiter mla ops.
|
|
# By default is enabled.
|
|
"VLLM_ROCM_USE_AITER_MLA":
|
|
lambda: (os.getenv("VLLM_ROCM_USE_AITER_MLA", "True").lower() in
|
|
("true", "1")),
|
|
|
|
# Whether to use aiter mha ops.
|
|
# By default is enabled.
|
|
"VLLM_ROCM_USE_AITER_MHA":
|
|
lambda: (os.getenv("VLLM_ROCM_USE_AITER_MHA", "True").lower() in
|
|
("true", "1")),
|
|
|
|
# use rocm skinny gemms
|
|
"VLLM_ROCM_USE_SKINNY_GEMM":
|
|
lambda: (os.getenv("VLLM_ROCM_USE_SKINNY_GEMM", "True").lower() in
|
|
("true", "1")),
|
|
|
|
# Pad the fp8 weights to 256 bytes for ROCm
|
|
"VLLM_ROCM_FP8_PADDING":
|
|
lambda: bool(int(os.getenv("VLLM_ROCM_FP8_PADDING", "1"))),
|
|
|
|
# Pad the weights for the moe kernel
|
|
"VLLM_ROCM_MOE_PADDING":
|
|
lambda: bool(int(os.getenv("VLLM_ROCM_MOE_PADDING", "1"))),
|
|
|
|
# custom paged attention kernel for MI3* cards
|
|
"VLLM_ROCM_CUSTOM_PAGED_ATTN":
|
|
lambda: (os.getenv("VLLM_ROCM_CUSTOM_PAGED_ATTN", "True").lower() in
|
|
("true", "1")),
|
|
|
|
# Custom quick allreduce kernel for MI3* cards
|
|
# Choice of quantization level: FP, INT8, INT6, INT4 or NONE
|
|
# Recommended for large models to get allreduce
|
|
"VLLM_ROCM_QUICK_REDUCE_QUANTIZATION":
|
|
lambda: os.getenv("VLLM_ROCM_QUICK_REDUCE_QUANTIZATION", "NONE").upper(),
|
|
|
|
# Custom quick allreduce kernel for MI3* cards
|
|
# Due to the lack of the bfloat16 asm instruction, bfloat16
|
|
# kernels are slower than fp16,
|
|
# If environment variable is set to 1, the input is converted to fp16
|
|
"VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16":
|
|
lambda:
|
|
(os.getenv("VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16", "True").lower() in
|
|
("true", "1")),
|
|
|
|
# Custom quick allreduce kernel for MI3* cards.
|
|
# Controls the maximum allowed number of data bytes(MB) for custom quick
|
|
# allreduce communication.
|
|
# Default: 2048 MB.
|
|
# Data exceeding this size will use either custom allreduce or RCCL
|
|
# communication.
|
|
"VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB":
|
|
lambda: maybe_convert_int(
|
|
os.environ.get("VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB", None)),
|
|
|
|
# Divisor for dynamic query scale factor calculation for FP8 KV Cache
|
|
"Q_SCALE_CONSTANT":
|
|
lambda: int(os.getenv("Q_SCALE_CONSTANT", "200")),
|
|
# Divisor for dynamic key scale factor calculation for FP8 KV Cache
|
|
"K_SCALE_CONSTANT":
|
|
lambda: int(os.getenv("K_SCALE_CONSTANT", "200")),
|
|
# Divisor for dynamic value scale factor calculation for FP8 KV Cache
|
|
"V_SCALE_CONSTANT":
|
|
lambda: int(os.getenv("V_SCALE_CONSTANT", "100")),
|
|
|
|
# If set, enable multiprocessing in LLM for the V1 code path.
|
|
"VLLM_ENABLE_V1_MULTIPROCESSING":
|
|
lambda: bool(int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))),
|
|
"VLLM_LOG_BATCHSIZE_INTERVAL":
|
|
lambda: float(os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1")),
|
|
"VLLM_DISABLE_COMPILE_CACHE":
|
|
lambda: bool(int(os.getenv("VLLM_DISABLE_COMPILE_CACHE", "0"))),
|
|
|
|
# If set, vllm will run in development mode, which will enable
|
|
# some additional endpoints for developing and debugging,
|
|
# e.g. `/reset_prefix_cache`
|
|
"VLLM_SERVER_DEV_MODE":
|
|
lambda: bool(int(os.getenv("VLLM_SERVER_DEV_MODE", "0"))),
|
|
|
|
# Controls the maximum number of requests to handle in a
|
|
# single asyncio task when processing per-token outputs in the
|
|
# V1 AsyncLLM interface. It is applicable when handling a high
|
|
# concurrency of streaming requests.
|
|
# Setting this too high can result in a higher variance of
|
|
# inter-message latencies. Setting it too low can negatively impact
|
|
# TTFT and overall throughput.
|
|
"VLLM_V1_OUTPUT_PROC_CHUNK_SIZE":
|
|
lambda: int(os.getenv("VLLM_V1_OUTPUT_PROC_CHUNK_SIZE", "128")),
|
|
|
|
# If set, vLLM will disable the MLA attention optimizations.
|
|
"VLLM_MLA_DISABLE":
|
|
lambda: bool(int(os.getenv("VLLM_MLA_DISABLE", "0"))),
|
|
|
|
# Number of GPUs per worker in Ray, if it is set to be a fraction,
|
|
# it allows ray to schedule multiple actors on a single GPU,
|
|
# so that users can colocate other actors on the same GPUs as vLLM.
|
|
"VLLM_RAY_PER_WORKER_GPUS":
|
|
lambda: float(os.getenv("VLLM_RAY_PER_WORKER_GPUS", "1.0")),
|
|
|
|
# Bundle indices for Ray, if it is set, it can control precisely
|
|
# which indices are used for the Ray bundle, for every worker.
|
|
# Format: comma-separated list of integers, e.g. "0,1,2,3"
|
|
"VLLM_RAY_BUNDLE_INDICES":
|
|
lambda: os.getenv("VLLM_RAY_BUNDLE_INDICES", ""),
|
|
|
|
# In some system, find_loaded_library() may not work. So we allow users to
|
|
# specify the path through environment variable VLLM_CUDART_SO_PATH.
|
|
"VLLM_CUDART_SO_PATH":
|
|
lambda: os.getenv("VLLM_CUDART_SO_PATH", None),
|
|
|
|
# Rank of the process in the data parallel setting
|
|
"VLLM_DP_RANK":
|
|
lambda: int(os.getenv("VLLM_DP_RANK", "0")),
|
|
|
|
# Rank of the process in the data parallel setting.
|
|
# Defaults to VLLM_DP_RANK when not set.
|
|
"VLLM_DP_RANK_LOCAL":
|
|
lambda: int(
|
|
os.getenv("VLLM_DP_RANK_LOCAL", sys.modules[__name__].VLLM_DP_RANK)),
|
|
|
|
# World size of the data parallel setting
|
|
"VLLM_DP_SIZE":
|
|
lambda: int(os.getenv("VLLM_DP_SIZE", "1")),
|
|
|
|
# IP address of the master node in the data parallel setting
|
|
"VLLM_DP_MASTER_IP":
|
|
lambda: os.getenv("VLLM_DP_MASTER_IP", "127.0.0.1"),
|
|
|
|
# Port of the master node in the data parallel setting
|
|
"VLLM_DP_MASTER_PORT":
|
|
lambda: int(os.getenv("VLLM_DP_MASTER_PORT", "0")),
|
|
|
|
# In the context of executing MoE models with Data-Parallel, Expert-Parallel
|
|
# and Batched All-to-All dispatch/combine kernels, VLLM_MOE_DP_CHUNK_SIZE
|
|
# dictates the quantum of tokens that can be dispatched from a DP
|
|
# rank. All DP ranks process the activations in VLLM_MOE_DP_CHUNK_SIZE
|
|
# units.
|
|
"VLLM_MOE_DP_CHUNK_SIZE":
|
|
lambda: int(os.getenv("VLLM_MOE_DP_CHUNK_SIZE", "256")),
|
|
|
|
# Randomize inputs during dummy runs when using Data Parallel
|
|
"VLLM_RANDOMIZE_DP_DUMMY_INPUTS":
|
|
lambda: os.environ.get("VLLM_RANDOMIZE_DP_DUMMY_INPUTS", "0") == "1",
|
|
|
|
# Whether to use S3 path for model loading in CI via RunAI Streamer
|
|
"VLLM_CI_USE_S3":
|
|
lambda: os.environ.get("VLLM_CI_USE_S3", "0") == "1",
|
|
|
|
# Use model_redirect to redirect the model name to a local folder.
|
|
# `model_redirect` can be a json file mapping the model between
|
|
# repo_id and local folder:
|
|
# {"meta-llama/Llama-3.2-1B": "/tmp/Llama-3.2-1B"}
|
|
# or a space separated values table file:
|
|
# meta-llama/Llama-3.2-1B /tmp/Llama-3.2-1B
|
|
"VLLM_MODEL_REDIRECT_PATH":
|
|
lambda: os.environ.get("VLLM_MODEL_REDIRECT_PATH", None),
|
|
|
|
# Whether to use atomicAdd reduce in gptq/awq marlin kernel.
|
|
"VLLM_MARLIN_USE_ATOMIC_ADD":
|
|
lambda: os.environ.get("VLLM_MARLIN_USE_ATOMIC_ADD", "0") == "1",
|
|
|
|
# Whether to use marlin kernel in mxfp4 quantization method
|
|
"VLLM_MXFP4_USE_MARLIN":
|
|
lambda: maybe_convert_bool(os.environ.get("VLLM_MXFP4_USE_MARLIN", None)),
|
|
|
|
# Whether to turn on the outlines cache for V0
|
|
# This cache is unbounded and on disk, so it's not safe to use in
|
|
# an environment with potentially malicious users.
|
|
"VLLM_V0_USE_OUTLINES_CACHE":
|
|
lambda: os.environ.get("VLLM_V0_USE_OUTLINES_CACHE", "0") == "1",
|
|
|
|
# Whether to turn on the outlines cache for V1
|
|
# This cache is unbounded and on disk, so it's not safe to use in
|
|
# an environment with potentially malicious users.
|
|
"VLLM_V1_USE_OUTLINES_CACHE":
|
|
lambda: os.environ.get("VLLM_V1_USE_OUTLINES_CACHE", "0") == "1",
|
|
|
|
# Gap between padding buckets for the forward pass. So we have
|
|
# 8, we will run forward pass with [16, 24, 32, ...].
|
|
"VLLM_TPU_BUCKET_PADDING_GAP":
|
|
lambda: int(os.environ["VLLM_TPU_BUCKET_PADDING_GAP"])
|
|
if "VLLM_TPU_BUCKET_PADDING_GAP" in os.environ else 0,
|
|
"VLLM_TPU_MOST_MODEL_LEN":
|
|
lambda: maybe_convert_int(os.environ.get("VLLM_TPU_MOST_MODEL_LEN", None)),
|
|
|
|
# Whether using Pathways
|
|
"VLLM_TPU_USING_PATHWAYS":
|
|
lambda: bool("proxy" in os.getenv("JAX_PLATFORMS", "").lower()),
|
|
|
|
# Allow use of DeepGemm kernels for fused moe ops.
|
|
"VLLM_USE_DEEP_GEMM":
|
|
lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM", "0"))),
|
|
|
|
# Whether to use E8M0 scaling when DeepGEMM is used on Blackwell GPUs.
|
|
"VLLM_USE_DEEP_GEMM_E8M0":
|
|
lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM_E8M0", "1"))),
|
|
# TODO(wentao): unify the two E8M0 flags after verifying the correctness.
|
|
# Whether to use E8M0 scaling when DeepGEMM is used on Hopper GPUs.
|
|
"VLLM_USE_DEEP_GEMM_E8M0_HOPPER":
|
|
lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM_E8M0_HOPPER", "0"))),
|
|
# DeepGemm JITs the kernels on-demand. The warmup attempts to make DeepGemm
|
|
# JIT all the required kernels before model execution so there is no
|
|
# JIT'ing in the hot-path. However, this warmup increases the engine
|
|
# startup time by a couple of minutes.
|
|
# Set `VLLM_SKIP_DEEP_GEMM_WARMUP` to disable the warmup.
|
|
"VLLM_SKIP_DEEP_GEMM_WARMUP":
|
|
lambda: bool(int(os.getenv("VLLM_SKIP_DEEP_GEMM_WARMUP", "0"))),
|
|
|
|
# Whether to use fused grouped_topk used for MoE expert selection.
|
|
"VLLM_USE_FUSED_MOE_GROUPED_TOPK":
|
|
lambda: bool(int(os.getenv("VLLM_USE_FUSED_MOE_GROUPED_TOPK", "1"))),
|
|
|
|
# Allow use of FlashInfer MoE kernels for fused moe ops.
|
|
"VLLM_USE_FLASHINFER_MOE_FP8":
|
|
lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP8", "0"))),
|
|
|
|
# Allow use of FlashInfer CUTLASS kernels for fused moe ops.
|
|
"VLLM_USE_FLASHINFER_MOE_FP4":
|
|
lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP4", "0"))),
|
|
|
|
# If set to 1, use the FlashInfer
|
|
# MXFP8 (activation) x MXFP4 (weight) MoE backend.
|
|
"VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8":
|
|
lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8", "0"))),
|
|
|
|
# If set to 1, use the FlashInfer
|
|
# BF16 (activation) x MXFP4 (weight) MoE backend.
|
|
"VLLM_USE_FLASHINFER_MOE_MXFP4_BF16":
|
|
lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_MXFP4_BF16", "0"))),
|
|
|
|
# Control the cache sized used by the xgrammar compiler. The default
|
|
# of 512 MB should be enough for roughly 1000 JSON schemas.
|
|
# It can be changed with this variable if needed for some reason.
|
|
"VLLM_XGRAMMAR_CACHE_MB":
|
|
lambda: int(os.getenv("VLLM_XGRAMMAR_CACHE_MB", "512")),
|
|
|
|
# Control the threshold for msgspec to use 'zero copy' for
|
|
# serialization/deserialization of tensors. Tensors below
|
|
# this limit will be encoded into the msgpack buffer, and
|
|
# tensors above will instead be sent via a separate message.
|
|
# While the sending side still actually copies the tensor
|
|
# in all cases, on the receiving side, tensors above this
|
|
# limit will actually be zero-copy decoded.
|
|
"VLLM_MSGPACK_ZERO_COPY_THRESHOLD":
|
|
lambda: int(os.getenv("VLLM_MSGPACK_ZERO_COPY_THRESHOLD", "256")),
|
|
|
|
# If set, allow insecure serialization using pickle.
|
|
# This is useful for environments where it is deemed safe to use the
|
|
# insecure method and it is needed for some reason.
|
|
"VLLM_ALLOW_INSECURE_SERIALIZATION":
|
|
lambda: bool(int(os.getenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "0"))),
|
|
|
|
# IP address used for NIXL handshake between remote agents.
|
|
"VLLM_NIXL_SIDE_CHANNEL_HOST":
|
|
lambda: os.getenv("VLLM_NIXL_SIDE_CHANNEL_HOST", "localhost"),
|
|
|
|
# Port used for NIXL handshake between remote agents.
|
|
"VLLM_NIXL_SIDE_CHANNEL_PORT":
|
|
lambda: int(os.getenv("VLLM_NIXL_SIDE_CHANNEL_PORT", "5557")),
|
|
|
|
# all2all backend for vllm's expert parallel communication
|
|
# Available options:
|
|
# - "naive": naive all2all implementation using all-reduce
|
|
# - "pplx": use pplx kernels
|
|
# - "deepep_high_throughput", use deepep high-throughput kernels
|
|
# - "deepep_low_latency", use deepep low-latency kernels
|
|
"VLLM_ALL2ALL_BACKEND":
|
|
lambda: os.getenv("VLLM_ALL2ALL_BACKEND", "naive"),
|
|
|
|
# Flashinfer MoE backend for vLLM's fused Mixture-of-Experts support. Both
|
|
# require compute capability 10.0 or above.
|
|
# Available options:
|
|
# - "throughput": [default]
|
|
# Uses CUTLASS kernels optimized for high-throughput batch inference.
|
|
# - "latency":
|
|
# Uses TensorRT-LLM kernels optimized for low-latency inference.
|
|
# To set this backend, define the environment variable:
|
|
# export VLLM_FLASHINFER_MOE_BACKEND=latency.
|
|
# If not set, defaults to "throughput".
|
|
"VLLM_FLASHINFER_MOE_BACKEND": lambda: os.getenv(
|
|
"VLLM_FLASHINFER_MOE_BACKEND", "throughput"
|
|
),
|
|
|
|
# Control the maximum number of tokens per expert supported by the
|
|
# NVFP4 MoE CUTLASS Kernel. This value is used to create a buffer for
|
|
# the blockscale tensor of activations NVFP4 Quantization.
|
|
# This is used to prevent the kernel from running out of memory.
|
|
"VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE":
|
|
lambda: int(os.getenv("VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE", "163840")),
|
|
|
|
# Specifies the thresholds of the communicated tensor sizes under which
|
|
# vllm should use flashinfer fused allreduce. The variable should be a
|
|
# JSON with the following format:
|
|
# { <world size>: <max size in mb> }
|
|
# Unspecified world sizes will fallback to
|
|
# { 2: 64, 4: 1, <everything else>: 0.5 }
|
|
"VLLM_FLASHINFER_ALLREDUCE_FUSION_THRESHOLDS_MB":
|
|
lambda: json.loads(os.getenv(
|
|
"VLLM_FLASHINFER_ALLREDUCE_FUSION_THRESHOLDS_MB", "{}")),
|
|
|
|
# MoE routing strategy selector.
|
|
# See `RoutingSimulator.get_available_strategies()` # for available
|
|
# strategies.
|
|
# Cutstom routing strategies can be registered by
|
|
# RoutingSimulator.register_strategy()
|
|
# Note: custom strategies may not produce correct model outputs
|
|
"VLLM_MOE_ROUTING_SIMULATION_STRATEGY":
|
|
lambda: os.environ.get("VLLM_MOE_ROUTING_SIMULATION_STRATEGY", "").lower(),
|
|
|
|
# Regex timeout for use by the vLLM tool parsing plugins.
|
|
"VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS":
|
|
lambda: int(os.getenv("VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS", "1")),
|
|
|
|
# Reduce CPU usage when vLLM is idle. Enabling this will incur small
|
|
# latency penalty when a request eventually comes.
|
|
"VLLM_SLEEP_WHEN_IDLE":
|
|
lambda: bool(int(os.getenv("VLLM_SLEEP_WHEN_IDLE", "0"))),
|
|
|
|
# Control the max chunk bytes (in MB) for the rpc message queue.
|
|
# Object larger than this threshold will be broadcast to worker
|
|
# processes via zmq.
|
|
"VLLM_MQ_MAX_CHUNK_BYTES_MB":
|
|
lambda: int(os.getenv("VLLM_MQ_MAX_CHUNK_BYTES_MB", "16")),
|
|
|
|
# Timeout in seconds for execute_model RPC calls in multiprocessing
|
|
# executor (only applies when TP > 1).
|
|
"VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS":
|
|
lambda: int(os.getenv("VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS", "300")),
|
|
|
|
# KV Cache layout used throughout vllm.
|
|
# Some common values are:
|
|
# - NHD
|
|
# - HND
|
|
# Where N=num_blocks, H=num_heads and D=head_size. The default value will
|
|
# leave the layout choice to the backend. Mind that backends may only
|
|
# implement and support a subset of all possible layouts.
|
|
"VLLM_KV_CACHE_LAYOUT":
|
|
lambda: os.getenv("VLLM_KV_CACHE_LAYOUT", None),
|
|
|
|
# Enable checking whether the generated logits contain NaNs,
|
|
# indicating corrupted output. Useful for debugging low level bugs
|
|
# or bad hardware but it may add compute overhead.
|
|
"VLLM_COMPUTE_NANS_IN_LOGITS":
|
|
lambda: bool(int(os.getenv("VLLM_COMPUTE_NANS_IN_LOGITS", "0"))),
|
|
|
|
# Controls whether or not emulations are used for NVFP4
|
|
# generations on machines < 100 for compressed-tensors
|
|
# models
|
|
"VLLM_USE_NVFP4_CT_EMULATIONS":
|
|
lambda: bool(int(os.getenv("VLLM_USE_NVFP4_CT_EMULATIONS", "0"))),
|
|
|
|
# Time (in seconds) after which the KV cache on the producer side is
|
|
# automatically cleared if no READ notification is received from the
|
|
# consumer. This is only applicable when using NixlConnector in a
|
|
# disaggregated decode-prefill setup.
|
|
"VLLM_NIXL_ABORT_REQUEST_TIMEOUT":
|
|
lambda: int(os.getenv("VLLM_NIXL_ABORT_REQUEST_TIMEOUT", "120")),
|
|
|
|
# Controls whether or not to use cudnn prefill
|
|
"VLLM_USE_CUDNN_PREFILL":
|
|
lambda: bool(int(os.getenv("VLLM_USE_CUDNN_PREFILL", "0"))),
|
|
|
|
# If set to 1, use the TRTLLM attention backend in flashinfer.
|
|
"VLLM_USE_TRTLLM_ATTENTION":
|
|
lambda: os.getenv("VLLM_USE_TRTLLM_ATTENTION", None),
|
|
|
|
# If set, it means we pre-downloaded cubin files and flashinfer will
|
|
# read the cubin files directly.
|
|
"VLLM_HAS_FLASHINFER_CUBIN":
|
|
lambda: os.getenv("VLLM_HAS_FLASHINFER_CUBIN", False),
|
|
|
|
# If set to 1, force the use of TRTLLM FP4 GEMM backend in flashinfer.
|
|
# Otherwise, uses the first available of: flashinfer cutlass GEMM,
|
|
# vllm cutlass GEMM, marlin GEMM.
|
|
"VLLM_USE_TRTLLM_FP4_GEMM":
|
|
lambda: bool(int(os.getenv("VLLM_USE_TRTLLM_FP4_GEMM", "0"))),
|
|
|
|
# Controls garbage collection during CUDA graph capture.
|
|
# If set to 0 (default), enables GC freezing to speed up capture time.
|
|
# If set to 1, allows GC to run during capture.
|
|
"VLLM_ENABLE_CUDAGRAPH_GC":
|
|
lambda: bool(int(os.getenv("VLLM_ENABLE_CUDAGRAPH_GC", "0"))),
|
|
|
|
# Disable padding to CUDA graph capture batch sizes.
|
|
# TODO(wentao): https://github.com/vllm-project/vllm/issues/23378
|
|
# After the issue is fixed, we can remove this flag.
|
|
"VLLM_DISABLE_PAD_FOR_CUDAGRAPH":
|
|
lambda: bool(int(os.getenv("VLLM_DISABLE_PAD_FOR_CUDAGRAPH", "0"))),
|
|
|
|
# Used to force set up loopback IP
|
|
"VLLM_LOOPBACK_IP":
|
|
lambda: os.getenv("VLLM_LOOPBACK_IP", ""),
|
|
|
|
# Used to set the process name prefix for vLLM processes.
|
|
# This is useful for debugging and monitoring purposes.
|
|
# The default value is "VLLM".
|
|
"VLLM_PROCESS_NAME_PREFIX":
|
|
lambda: os.getenv("VLLM_PROCESS_NAME_PREFIX", "VLLM"),
|
|
|
|
# Allow chunked local attention with hybrid kv cache manager.
|
|
# Currently using the Hybrid KV cache manager with chunked local attention
|
|
# in the Llama4 models (the only models currently using chunked local attn)
|
|
# causes a latency regression. For this reason, we disable it by default.
|
|
# This flag is used to allow users to enable it if they want to (to save on
|
|
# kv-cache memory usage and enable longer contexts)
|
|
# TODO(lucas): Remove this flag once latency regression is resolved.
|
|
"VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE":
|
|
lambda: bool(int(os.getenv(\
|
|
"VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE", "0"))),
|
|
|
|
# Enables support for the "store" option in the OpenAI Responses API.
|
|
# When set to 1, vLLM's OpenAI server will retain the input and output
|
|
# messages for those requests in memory. By default, this is disabled (0),
|
|
# and the "store" option is ignored.
|
|
# NOTE/WARNING:
|
|
# 1. Messages are kept in memory only (not persisted to disk) and will be
|
|
# lost when the vLLM server shuts down.
|
|
# 2. Enabling this option will cause a memory leak, as stored messages are
|
|
# never removed from memory until the server terminates.
|
|
"VLLM_ENABLE_RESPONSES_API_STORE":
|
|
lambda: bool(int(os.getenv("VLLM_ENABLE_RESPONSES_API_STORE", "0"))),
|
|
|
|
# Whether to use pytorch symmetric memory for allreduce
|
|
"VLLM_ALLREDUCE_USE_SYMM_MEM":
|
|
lambda: bool(int(os.getenv("VLLM_ALLREDUCE_USE_SYMM_MEM", "0"))),
|
|
|
|
# Allows vllm to find tuned config under customized folder
|
|
"VLLM_TUNED_CONFIG_FOLDER":
|
|
lambda: os.getenv("VLLM_TUNED_CONFIG_FOLDER", None),
|
|
|
|
}
|
|
|
|
# --8<-- [end:env-vars-definition]
|
|
|
|
|
|
def __getattr__(name: str):
|
|
# lazy evaluation of environment variables
|
|
if name in environment_variables:
|
|
return environment_variables[name]()
|
|
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|
|
|
|
|
|
def __dir__():
|
|
return list(environment_variables.keys())
|
|
|
|
|
|
def is_set(name: str):
|
|
"""Check if an environment variable is explicitly set."""
|
|
if name in environment_variables:
|
|
return name in os.environ
|
|
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|
|
|
|
|
|
def set_vllm_use_v1(use_v1: bool):
|
|
if is_set("VLLM_USE_V1"):
|
|
raise ValueError(
|
|
"Should not call set_vllm_use_v1() if VLLM_USE_V1 is set "
|
|
"explicitly by the user. Please raise this as a Github "
|
|
"Issue and explicitly set VLLM_USE_V1=0 or 1.")
|
|
os.environ["VLLM_USE_V1"] = "1" if use_v1 else "0"
|
|
|
|
|
|
def compute_hash() -> str:
|
|
"""
|
|
WARNING: Whenever a new key is added to this environment
|
|
variables, ensure that it is included in the factors list if
|
|
it affects the computation graph. For example, different values
|
|
of VLLM_PP_LAYER_PARTITION will generate different computation
|
|
graphs, so it is included in the factors list. The env vars that
|
|
affect the choice of different kernels or attention backends should
|
|
also be included in the factors list.
|
|
"""
|
|
|
|
# The values of envs may affects the computation graph.
|
|
# TODO(DefTruth): hash all environment variables?
|
|
# for key in environment_variables:
|
|
# factorize(key)
|
|
environment_variables_to_hash = [
|
|
"VLLM_PP_LAYER_PARTITION",
|
|
"VLLM_MLA_DISABLE",
|
|
"VLLM_USE_TRITON_FLASH_ATTN",
|
|
"VLLM_USE_TRITON_AWQ",
|
|
"VLLM_DP_RANK",
|
|
"VLLM_DP_SIZE",
|
|
"VLLM_USE_STANDALONE_COMPILE",
|
|
"VLLM_FUSED_MOE_CHUNK_SIZE",
|
|
"VLLM_FLASHINFER_MOE_BACKEND",
|
|
"VLLM_V1_USE_PREFILL_DECODE_ATTENTION",
|
|
"VLLM_USE_AITER_UNIFIED_ATTENTION",
|
|
"VLLM_ATTENTION_BACKEND",
|
|
"VLLM_USE_FLASHINFER_SAMPLER",
|
|
"VLLM_DISABLED_KERNELS",
|
|
"VLLM_USE_DEEP_GEMM",
|
|
"VLLM_USE_DEEP_GEMM_E8M0",
|
|
"VLLM_USE_DEEP_GEMM_E8M0_HOPPER",
|
|
"VLLM_USE_TRTLLM_FP4_GEMM",
|
|
"VLLM_USE_FUSED_MOE_GROUPED_TOPK",
|
|
"VLLM_USE_FLASHINFER_MOE_FP8",
|
|
"VLLM_USE_FLASHINFER_MOE_FP4",
|
|
"VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8",
|
|
"VLLM_USE_FLASHINFER_MOE_MXFP4_BF16",
|
|
"VLLM_USE_CUDNN_PREFILL",
|
|
"VLLM_USE_TRTLLM_ATTENTION",
|
|
"VLLM_ROCM_USE_AITER",
|
|
"VLLM_ROCM_USE_AITER_PAGED_ATTN",
|
|
"VLLM_ROCM_USE_AITER_LINEAR",
|
|
"VLLM_ROCM_USE_AITER_MOE",
|
|
"VLLM_ROCM_USE_AITER_RMSNORM",
|
|
"VLLM_ROCM_USE_AITER_MLA",
|
|
"VLLM_ROCM_USE_AITER_MHA",
|
|
"VLLM_ROCM_USE_SKINNY_GEMM",
|
|
"VLLM_ROCM_FP8_PADDING",
|
|
"VLLM_ROCM_MOE_PADDING",
|
|
"VLLM_ROCM_CUSTOM_PAGED_ATTN",
|
|
"VLLM_ROCM_QUICK_REDUCE_QUANTIZATION",
|
|
"VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16",
|
|
"VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB",
|
|
]
|
|
for key in environment_variables_to_hash:
|
|
# if this goes out of sync with environment_variables,
|
|
# it's not a user error, it's a bug
|
|
assert key in environment_variables, \
|
|
"Please update environment_variables_to_hash in envs.py"
|
|
|
|
factors = [
|
|
environment_variables[key]() for key in environment_variables_to_hash
|
|
]
|
|
|
|
hash_str = hashlib.md5(str(factors).encode(),
|
|
usedforsecurity=False).hexdigest()
|
|
|
|
return hash_str
|