185 lines
5.8 KiB
Python
185 lines
5.8 KiB
Python
# Adapted from
|
|
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
|
|
import time
|
|
from typing import Dict, List, Literal, Optional, Union
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from vllm.utils import random_uuid
|
|
|
|
|
|
class ErrorResponse(BaseModel):
|
|
object: str = "error"
|
|
message: str
|
|
type: str
|
|
param: Optional[str] = None
|
|
code: Optional[str] = None
|
|
|
|
|
|
class ModelPermission(BaseModel):
|
|
id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
|
|
object: str = "model_permission"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
allow_create_engine: bool = False
|
|
allow_sampling: bool = True
|
|
allow_logprobs: bool = True
|
|
allow_search_indices: bool = False
|
|
allow_view: bool = True
|
|
allow_fine_tuning: bool = False
|
|
organization: str = "*"
|
|
group: Optional[str] = None
|
|
is_blocking: str = False
|
|
|
|
|
|
class ModelCard(BaseModel):
|
|
id: str
|
|
object: str = "model"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
owned_by: str = "vllm"
|
|
root: Optional[str] = None
|
|
parent: Optional[str] = None
|
|
permission: List[ModelPermission] = Field(default_factory=list)
|
|
|
|
|
|
class ModelList(BaseModel):
|
|
object: str = "list"
|
|
data: List[ModelCard] = Field(default_factory=list)
|
|
|
|
|
|
class UsageInfo(BaseModel):
|
|
prompt_tokens: int = 0
|
|
total_tokens: int = 0
|
|
completion_tokens: Optional[int] = 0
|
|
|
|
|
|
class ChatCompletionRequest(BaseModel):
|
|
model: str
|
|
messages: Union[str, List[Dict[str, str]]]
|
|
temperature: Optional[float] = 0.7
|
|
top_p: Optional[float] = 1.0
|
|
n: Optional[int] = 1
|
|
max_tokens: Optional[int] = None
|
|
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
|
|
stream: Optional[bool] = False
|
|
presence_penalty: Optional[float] = 0.0
|
|
frequency_penalty: Optional[float] = 0.0
|
|
logit_bias: Optional[Dict[str, float]] = None
|
|
user: Optional[str] = None
|
|
# Additional parameters supported by vLLM
|
|
best_of: Optional[int] = None
|
|
top_k: Optional[int] = -1
|
|
ignore_eos: Optional[bool] = False
|
|
use_beam_search: Optional[bool] = False
|
|
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
|
|
skip_special_tokens: Optional[bool] = True
|
|
spaces_between_special_tokens: Optional[bool] = True
|
|
add_generation_prompt: Optional[bool] = True
|
|
echo: Optional[bool] = False
|
|
|
|
|
|
class CompletionRequest(BaseModel):
|
|
model: str
|
|
# a string, array of strings, array of tokens, or array of token arrays
|
|
prompt: Union[List[int], List[List[int]], str, List[str]]
|
|
suffix: Optional[str] = None
|
|
max_tokens: Optional[int] = 16
|
|
temperature: Optional[float] = 1.0
|
|
top_p: Optional[float] = 1.0
|
|
n: Optional[int] = 1
|
|
stream: Optional[bool] = False
|
|
logprobs: Optional[int] = None
|
|
echo: Optional[bool] = False
|
|
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
|
|
presence_penalty: Optional[float] = 0.0
|
|
frequency_penalty: Optional[float] = 0.0
|
|
best_of: Optional[int] = None
|
|
logit_bias: Optional[Dict[str, float]] = None
|
|
user: Optional[str] = None
|
|
# Additional parameters supported by vLLM
|
|
top_k: Optional[int] = -1
|
|
ignore_eos: Optional[bool] = False
|
|
use_beam_search: Optional[bool] = False
|
|
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
|
|
skip_special_tokens: Optional[bool] = True
|
|
spaces_between_special_tokens: Optional[bool] = True
|
|
|
|
|
|
class LogProbs(BaseModel):
|
|
text_offset: List[int] = Field(default_factory=list)
|
|
token_logprobs: List[Optional[float]] = Field(default_factory=list)
|
|
tokens: List[str] = Field(default_factory=list)
|
|
top_logprobs: Optional[List[Optional[Dict[int, float]]]] = None
|
|
|
|
|
|
class CompletionResponseChoice(BaseModel):
|
|
index: int
|
|
text: str
|
|
logprobs: Optional[LogProbs] = None
|
|
finish_reason: Optional[Literal["stop", "length"]] = None
|
|
|
|
|
|
class CompletionResponse(BaseModel):
|
|
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
|
|
object: str = "text_completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[CompletionResponseChoice]
|
|
usage: UsageInfo
|
|
|
|
|
|
class CompletionResponseStreamChoice(BaseModel):
|
|
index: int
|
|
text: str
|
|
logprobs: Optional[LogProbs] = None
|
|
finish_reason: Optional[Literal["stop", "length"]] = None
|
|
|
|
|
|
class CompletionStreamResponse(BaseModel):
|
|
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
|
|
object: str = "text_completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[CompletionResponseStreamChoice]
|
|
usage: Optional[UsageInfo]
|
|
|
|
|
|
class ChatMessage(BaseModel):
|
|
role: str
|
|
content: str
|
|
|
|
|
|
class ChatCompletionResponseChoice(BaseModel):
|
|
index: int
|
|
message: ChatMessage
|
|
finish_reason: Optional[Literal["stop", "length"]] = None
|
|
|
|
|
|
class ChatCompletionResponse(BaseModel):
|
|
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
|
|
object: str = "chat.completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[ChatCompletionResponseChoice]
|
|
usage: UsageInfo
|
|
|
|
|
|
class DeltaMessage(BaseModel):
|
|
role: Optional[str] = None
|
|
content: Optional[str] = None
|
|
|
|
|
|
class ChatCompletionResponseStreamChoice(BaseModel):
|
|
index: int
|
|
delta: DeltaMessage
|
|
finish_reason: Optional[Literal["stop", "length"]] = None
|
|
|
|
|
|
class ChatCompletionStreamResponse(BaseModel):
|
|
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
|
|
object: str = "chat.completion.chunk"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: List[ChatCompletionResponseStreamChoice]
|
|
usage: Optional[UsageInfo] = Field(
|
|
default=None, description="data about request and response")
|