78 lines
2.4 KiB
Python
78 lines
2.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""A centralized entrypoint to perform distributed KV cache transfer.
|
|
|
|
This implementation is a shim wrapper on two APIs exposed by `kv_connector`:
|
|
1. `send_kv_caches_and_hidden_states`
|
|
2. `recv_kv_caches_and_hidden_states
|
|
"""
|
|
from typing import TYPE_CHECKING, Union
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.worker.model_runner import ModelInputForGPUWithSamplingMetadata
|
|
from vllm.config import VllmConfig
|
|
|
|
import torch
|
|
|
|
from vllm.distributed.kv_transfer.kv_connector.factory import (
|
|
KVConnectorFactory)
|
|
from vllm.logger import init_logger
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class KVTransferAgent:
|
|
"""
|
|
A class designated for distributed KV transfer
|
|
|
|
Target use cases:
|
|
1. Disaggregated prefill
|
|
2. Remote KV cache storage
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
rank: int,
|
|
local_rank: int,
|
|
config: "VllmConfig",
|
|
):
|
|
|
|
self.config = config
|
|
|
|
if config.kv_transfer_config is None:
|
|
raise ValueError("KVTransferConfig is not set in the VllmConfig,"
|
|
" cannot initialize KVConnector.")
|
|
|
|
assert self.config.kv_transfer_config.is_kv_transfer_instance, "KV"\
|
|
"TransferAgent should only be used when kv_connector is set."
|
|
|
|
self.connector = KVConnectorFactory.create_connector_v0(
|
|
rank, local_rank, config)
|
|
|
|
def send_kv_caches_and_hidden_states(
|
|
self,
|
|
model_executable: torch.nn.Module,
|
|
model_input: "ModelInputForGPUWithSamplingMetadata",
|
|
kv_caches: list[torch.Tensor],
|
|
hidden_or_intermediate_states: Union[torch.Tensor,
|
|
IntermediateTensors],
|
|
) -> None:
|
|
|
|
self.connector.send_kv_caches_and_hidden_states(
|
|
model_executable, model_input, kv_caches,
|
|
hidden_or_intermediate_states)
|
|
|
|
def close(self) -> None:
|
|
self.connector.close()
|
|
|
|
def recv_kv_caches_and_hidden_states(
|
|
self, model_executable: torch.nn.Module,
|
|
model_input: "ModelInputForGPUWithSamplingMetadata",
|
|
kv_caches: list[torch.Tensor]
|
|
) -> tuple[Union[torch.Tensor, IntermediateTensors], bool,
|
|
"ModelInputForGPUWithSamplingMetadata"]:
|
|
|
|
return self.connector.recv_kv_caches_and_hidden_states(
|
|
model_executable, model_input, kv_caches)
|