Files
vllm-dev/vllm/entrypoints/openai/protocol.py

1895 lines
68 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
import json
import time
from http import HTTPStatus
from typing import Annotated, Any, ClassVar, Literal, Optional, Union
import regex as re
import torch
from fastapi import HTTPException, UploadFile
from pydantic import (BaseModel, ConfigDict, Field, TypeAdapter,
ValidationInfo, field_validator, model_validator)
from typing_extensions import TypeAlias
from vllm import envs
from vllm.entrypoints.chat_utils import (ChatCompletionMessageParam,
random_tool_call_id)
from vllm.logger import init_logger
from vllm.pooling_params import PoolingParams
from vllm.sampling_params import (BeamSearchParams, GuidedDecodingParams,
RequestOutputKind, SamplingParams)
from vllm.sequence import Logprob
from vllm.utils import random_uuid, resolve_obj_by_qualname
logger = init_logger(__name__)
_LONG_INFO = torch.iinfo(torch.long)
class OpenAIBaseModel(BaseModel):
# OpenAI API does allow extra fields
model_config = ConfigDict(extra="allow")
# Cache class field names
field_names: ClassVar[Optional[set[str]]] = None
@model_validator(mode="wrap")
@classmethod
def __log_extra_fields__(cls, data, handler):
result = handler(data)
if not isinstance(data, dict):
return result
field_names = cls.field_names
if field_names is None:
# Get all class field names and their potential aliases
field_names = set()
for field_name, field in cls.model_fields.items():
field_names.add(field_name)
if alias := getattr(field, "alias", None):
field_names.add(alias)
cls.field_names = field_names
# Compare against both field names and aliases
if any(k not in field_names for k in data):
logger.warning(
"The following fields were present in the request "
"but ignored: %s",
data.keys() - field_names,
)
return result
class ErrorResponse(OpenAIBaseModel):
object: str = "error"
message: str
type: str
param: Optional[str] = None
code: int
class ModelPermission(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
object: str = "model_permission"
created: int = Field(default_factory=lambda: int(time.time()))
allow_create_engine: bool = False
allow_sampling: bool = True
allow_logprobs: bool = True
allow_search_indices: bool = False
allow_view: bool = True
allow_fine_tuning: bool = False
organization: str = "*"
group: Optional[str] = None
is_blocking: bool = False
class ModelCard(OpenAIBaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "vllm"
root: Optional[str] = None
parent: Optional[str] = None
max_model_len: Optional[int] = None
permission: list[ModelPermission] = Field(default_factory=list)
class ModelList(OpenAIBaseModel):
object: str = "list"
data: list[ModelCard] = Field(default_factory=list)
class PromptTokenUsageInfo(OpenAIBaseModel):
cached_tokens: Optional[int] = None
class UsageInfo(OpenAIBaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
prompt_tokens_details: Optional[PromptTokenUsageInfo] = None
class RequestResponseMetadata(BaseModel):
request_id: str
final_usage_info: Optional[UsageInfo] = None
class JsonSchemaResponseFormat(OpenAIBaseModel):
name: str
description: Optional[str] = None
# schema is the field in openai but that causes conflicts with pydantic so
# instead use json_schema with an alias
json_schema: Optional[dict[str, Any]] = Field(default=None, alias='schema')
strict: Optional[bool] = None
class StructuralTag(OpenAIBaseModel):
begin: str
# schema is the field, but that causes conflicts with pydantic so
# instead use structural_tag_schema with an alias
structural_tag_schema: Optional[dict[str, Any]] = Field(default=None,
alias="schema")
end: str
class StructuralTagResponseFormat(OpenAIBaseModel):
type: Literal["structural_tag"]
structures: list[StructuralTag]
triggers: list[str]
class ResponseFormat(OpenAIBaseModel):
# type must be "json_schema", "json_object", or "text"
type: Literal["text", "json_object", "json_schema"]
json_schema: Optional[JsonSchemaResponseFormat] = None
AnyResponseFormat = Union[ResponseFormat, StructuralTagResponseFormat]
class StreamOptions(OpenAIBaseModel):
include_usage: Optional[bool] = True
continuous_usage_stats: Optional[bool] = False
class FunctionDefinition(OpenAIBaseModel):
name: str
description: Optional[str] = None
parameters: Optional[dict[str, Any]] = None
class ChatCompletionToolsParam(OpenAIBaseModel):
type: Literal["function"] = "function"
function: FunctionDefinition
class ChatCompletionNamedFunction(OpenAIBaseModel):
name: str
class ChatCompletionNamedToolChoiceParam(OpenAIBaseModel):
function: ChatCompletionNamedFunction
type: Literal["function"] = "function"
# extra="forbid" is a workaround to have kwargs as a field,
# see https://github.com/pydantic/pydantic/issues/3125
class LogitsProcessorConstructor(BaseModel):
qualname: str
args: Optional[list[Any]] = None
kwargs: Optional[dict[str, Any]] = None
model_config = ConfigDict(extra="forbid")
LogitsProcessors = list[Union[str, LogitsProcessorConstructor]]
def get_logits_processors(processors: Optional[LogitsProcessors],
pattern: Optional[str]) -> Optional[list[Any]]:
if processors and pattern:
logits_processors = []
for processor in processors:
qualname = processor if isinstance(processor,
str) else processor.qualname
if not re.match(pattern, qualname):
raise ValueError(
f"Logits processor '{qualname}' is not allowed by this "
"server. See --logits-processor-pattern engine argument "
"for more information.")
try:
logits_processor = resolve_obj_by_qualname(qualname)
except Exception as e:
raise ValueError(
f"Logits processor '{qualname}' could not be resolved: {e}"
) from e
if isinstance(processor, LogitsProcessorConstructor):
logits_processor = logits_processor(*processor.args or [],
**processor.kwargs or {})
logits_processors.append(logits_processor)
return logits_processors
elif processors:
raise ValueError(
"The `logits_processors` argument is not supported by this "
"server. See --logits-processor-pattern engine argugment "
"for more information.")
return None
class ChatCompletionRequest(OpenAIBaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/chat/create
messages: list[ChatCompletionMessageParam]
model: Optional[str] = None
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[dict[str, float]] = None
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = 0
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
max_tokens: Optional[int] = Field(
default=None,
deprecated=
'max_tokens is deprecated in favor of the max_completion_tokens field')
max_completion_tokens: Optional[int] = None
n: Optional[int] = 1
presence_penalty: Optional[float] = 0.0
response_format: Optional[AnyResponseFormat] = None
seed: Optional[int] = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
stop: Optional[Union[str, list[str]]] = []
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
tools: Optional[list[ChatCompletionToolsParam]] = None
tool_choice: Optional[Union[
Literal["none"],
Literal["auto"],
Literal["required"],
ChatCompletionNamedToolChoiceParam,
]] = "none"
# NOTE this will be ignored by vLLM -- the model determines the behavior
parallel_tool_calls: Optional[bool] = False
user: Optional[str] = None
# --8<-- [start:chat-completion-sampling-params]
best_of: Optional[int] = None
use_beam_search: bool = False
top_k: Optional[int] = None
min_p: Optional[float] = None
repetition_penalty: Optional[float] = None
length_penalty: float = 1.0
stop_token_ids: Optional[list[int]] = []
include_stop_str_in_output: bool = False
ignore_eos: bool = False
min_tokens: int = 0
skip_special_tokens: bool = True
spaces_between_special_tokens: bool = True
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
prompt_logprobs: Optional[int] = None
# --8<-- [end:chat-completion-sampling-params]
# --8<-- [start:chat-completion-extra-params]
echo: bool = Field(
default=False,
description=(
"If true, the new message will be prepended with the last message "
"if they belong to the same role."),
)
add_generation_prompt: bool = Field(
default=True,
description=
("If true, the generation prompt will be added to the chat template. "
"This is a parameter used by chat template in tokenizer config of the "
"model."),
)
continue_final_message: bool = Field(
default=False,
description=
("If this is set, the chat will be formatted so that the final "
"message in the chat is open-ended, without any EOS tokens. The "
"model will continue this message rather than starting a new one. "
"This allows you to \"prefill\" part of the model's response for it. "
"Cannot be used at the same time as `add_generation_prompt`."),
)
add_special_tokens: bool = Field(
default=False,
description=(
"If true, special tokens (e.g. BOS) will be added to the prompt "
"on top of what is added by the chat template. "
"For most models, the chat template takes care of adding the "
"special tokens so this should be set to false (as is the "
"default)."),
)
documents: Optional[list[dict[str, str]]] = Field(
default=None,
description=
("A list of dicts representing documents that will be accessible to "
"the model if it is performing RAG (retrieval-augmented generation)."
" If the template does not support RAG, this argument will have no "
"effect. We recommend that each document should be a dict containing "
"\"title\" and \"text\" keys."),
)
chat_template: Optional[str] = Field(
default=None,
description=(
"A Jinja template to use for this conversion. "
"As of transformers v4.44, default chat template is no longer "
"allowed, so you must provide a chat template if the tokenizer "
"does not define one."),
)
chat_template_kwargs: Optional[dict[str, Any]] = Field(
default=None,
description=("Additional kwargs to pass to the template renderer. "
"Will be accessible by the chat template."),
)
mm_processor_kwargs: Optional[dict[str, Any]] = Field(
default=None,
description=("Additional kwargs to pass to the HF processor."),
)
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
default=None,
description=("If specified, the output will follow the JSON schema."),
)
guided_regex: Optional[str] = Field(
default=None,
description=(
"If specified, the output will follow the regex pattern."),
)
guided_choice: Optional[list[str]] = Field(
default=None,
description=(
"If specified, the output will be exactly one of the choices."),
)
guided_grammar: Optional[str] = Field(
default=None,
description=(
"If specified, the output will follow the context free grammar."),
)
structural_tag: Optional[str] = Field(
default=None,
description=(
"If specified, the output will follow the structural tag schema."),
)
guided_decoding_backend: Optional[str] = Field(
default=None,
description=(
"If specified, will override the default guided decoding backend "
"of the server for this specific request. If set, must be either "
"'outlines' / 'lm-format-enforcer'"),
)
guided_whitespace_pattern: Optional[str] = Field(
default=None,
description=(
"If specified, will override the default whitespace pattern "
"for guided json decoding."),
)
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."),
)
request_id: str = Field(
default_factory=lambda: f"{random_uuid()}",
description=(
"The request_id related to this request. If the caller does "
"not set it, a random_uuid will be generated. This id is used "
"through out the inference process and return in response."),
)
logits_processors: Optional[LogitsProcessors] = Field(
default=None,
description=(
"A list of either qualified names of logits processors, or "
"constructor objects, to apply when sampling. A constructor is "
"a JSON object with a required 'qualname' field specifying the "
"qualified name of the processor class/factory, and optional "
"'args' and 'kwargs' fields containing positional and keyword "
"arguments. For example: {'qualname': "
"'my_module.MyLogitsProcessor', 'args': [1, 2], 'kwargs': "
"{'param': 'value'}}."))
return_tokens_as_token_ids: Optional[bool] = Field(
default=None,
description=(
"If specified with 'logprobs', tokens are represented "
" as strings of the form 'token_id:{token_id}' so that tokens "
"that are not JSON-encodable can be identified."))
cache_salt: Optional[str] = Field(
default=None,
description=(
"If specified, the prefix cache will be salted with the provided "
"string to prevent an attacker to guess prompts in multi-user "
"environments. The salt should be random, protected from "
"access by 3rd parties, and long enough to be "
"unpredictable (e.g., 43 characters base64-encoded, corresponding "
"to 256 bit). Not supported by vLLM engine V0."))
kv_transfer_params: Optional[dict[str, Any]] = Field(
default=None,
description="KVTransfer parameters used for disaggregated serving.")
# --8<-- [end:chat-completion-extra-params]
# Default sampling parameters for chat completion requests
_DEFAULT_SAMPLING_PARAMS: dict = {
"repetition_penalty": 1.0,
"temperature": 1.0,
"top_p": 1.0,
"top_k": 0,
"min_p": 0.0,
}
def to_beam_search_params(
self,
default_max_tokens: int,
default_sampling_params: Optional[dict] = None
) -> BeamSearchParams:
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
max_tokens = self.max_completion_tokens or self.max_tokens
if default_sampling_params is None:
default_sampling_params = {}
n = self.n if self.n is not None else 1
# Use minimum of context window, user request & server limit.
max_tokens = min(
val for val in (default_max_tokens, max_tokens,
default_sampling_params.get("max_tokens", None))
if val is not None)
if (temperature := self.temperature) is None:
temperature = default_sampling_params.get(
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
return BeamSearchParams(
beam_width=n,
max_tokens=max_tokens,
ignore_eos=self.ignore_eos,
temperature=temperature,
length_penalty=self.length_penalty,
include_stop_str_in_output=self.include_stop_str_in_output,
)
def to_sampling_params(
self,
default_max_tokens: int,
logits_processor_pattern: Optional[str],
default_sampling_params: Optional[dict] = None,
) -> SamplingParams:
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
max_tokens = self.max_completion_tokens or self.max_tokens
if default_sampling_params is None:
default_sampling_params = {}
# Use minimum of context window, user request & server limit.
max_tokens = min(
val for val in (default_max_tokens, max_tokens,
default_sampling_params.get("max_tokens", None))
if val is not None)
# Default parameters
if (repetition_penalty := self.repetition_penalty) is None:
repetition_penalty = default_sampling_params.get(
"repetition_penalty",
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
)
if (temperature := self.temperature) is None:
temperature = default_sampling_params.get(
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
if (top_p := self.top_p) is None:
top_p = default_sampling_params.get(
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"])
if (top_k := self.top_k) is None:
top_k = default_sampling_params.get(
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"])
if (min_p := self.min_p) is None:
min_p = default_sampling_params.get(
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"])
prompt_logprobs = self.prompt_logprobs
if prompt_logprobs is None and self.echo:
prompt_logprobs = self.top_logprobs
guided_json_object = None
if self.response_format is not None:
if self.response_format.type == "json_object":
guided_json_object = True
elif self.response_format.type == "json_schema":
json_schema = self.response_format.json_schema
assert json_schema is not None
self.guided_json = json_schema.json_schema
elif self.response_format.type == "structural_tag":
structural_tag = self.response_format
assert structural_tag is not None and isinstance(
structural_tag, StructuralTagResponseFormat)
s_tag_obj = structural_tag.model_dump(by_alias=True)
self.structural_tag = json.dumps(s_tag_obj)
guided_decoding = GuidedDecodingParams.from_optional(
json=self._get_guided_json_from_tool() or self.guided_json,
regex=self.guided_regex,
choice=self.guided_choice,
grammar=self.guided_grammar,
json_object=guided_json_object,
backend=self.guided_decoding_backend,
whitespace_pattern=self.guided_whitespace_pattern,
structural_tag=self.structural_tag,
)
return SamplingParams.from_optional(
n=self.n,
best_of=self.best_of,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
repetition_penalty=repetition_penalty,
temperature=temperature,
top_p=top_p,
top_k=top_k,
min_p=min_p,
seed=self.seed,
stop=self.stop,
stop_token_ids=self.stop_token_ids,
logprobs=self.top_logprobs if self.logprobs else None,
prompt_logprobs=prompt_logprobs,
ignore_eos=self.ignore_eos,
max_tokens=max_tokens,
min_tokens=self.min_tokens,
skip_special_tokens=self.skip_special_tokens,
spaces_between_special_tokens=self.spaces_between_special_tokens,
logits_processors=get_logits_processors(self.logits_processors,
logits_processor_pattern),
include_stop_str_in_output=self.include_stop_str_in_output,
truncate_prompt_tokens=self.truncate_prompt_tokens,
output_kind=RequestOutputKind.DELTA if self.stream \
else RequestOutputKind.FINAL_ONLY,
guided_decoding=guided_decoding,
logit_bias=self.logit_bias,
extra_args=({"kv_transfer_params": self.kv_transfer_params}
if self.kv_transfer_params else None))
def _get_guided_json_from_tool(
self) -> Optional[Union[str, dict, BaseModel]]:
# user has chosen to not use any tool
if self.tool_choice == "none" or self.tools is None:
return None
# user has chosen to use a named tool
if type(self.tool_choice) is ChatCompletionNamedToolChoiceParam:
tool_name = self.tool_choice.function.name
tools = {tool.function.name: tool.function for tool in self.tools}
if tool_name not in tools:
raise ValueError(
f"Tool '{tool_name}' has not been passed in `tools`.")
tool = tools[tool_name]
return tool.parameters
if self.tool_choice == "required":
# Pydantic schema generation cannot be used since the JSON schema
# has to be constructed for a specific instantiation of a tool list
# so that parameters of a function are correctly generated
# based on the chosen function name
def get_tool_schema(tool: ChatCompletionToolsParam) -> dict:
return {
"properties": {
"name": {
"type": "string",
"enum": [tool.function.name]
},
# parameters are always generated as '{}' in the final
# output if they are missing from the request
# (i.e. are None or '{}') so the schema is
# updated to produce an empty object in that case
"parameters": tool.function.parameters
if tool.function.parameters else {
"type": "object",
"properties": {}
}
},
"required": ["name", "parameters"]
}
json_schema = {
"type": "array",
"minItems": 1,
"items": {
"type": "object",
"anyOf": [get_tool_schema(tool) for tool in self.tools]
}
}
return json_schema
return None
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
if data.get("stream_options") and not data.get("stream"):
raise ValueError(
"Stream options can only be defined when `stream=True`.")
return data
@model_validator(mode="before")
@classmethod
def check_logprobs(cls, data):
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
if data.get("stream") and prompt_logprobs > 0:
raise ValueError(
"`prompt_logprobs` are not available when `stream=True`.")
if prompt_logprobs < 0:
raise ValueError("`prompt_logprobs` must be a positive value.")
if (top_logprobs := data.get("top_logprobs")) is not None:
if top_logprobs < 0:
raise ValueError("`top_logprobs` must be a positive value.")
if top_logprobs > 0 and not data.get("logprobs"):
raise ValueError(
"when using `top_logprobs`, `logprobs` must be set to true."
)
return data
@model_validator(mode="before")
@classmethod
def check_guided_decoding_count(cls, data):
if isinstance(data, ValueError):
raise data
guide_count = sum([
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None
])
# you can only use one kind of guided decoding
if guide_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex' or 'guided_choice').")
# you can only either use guided decoding or tools, not both
if guide_count > 1 and data.get("tool_choice", "none") not in (
"none",
"auto",
"required",
):
raise ValueError(
"You can only either use guided decoding or tools, not both.")
return data
@model_validator(mode="before")
@classmethod
def check_tool_usage(cls, data):
# if "tool_choice" is not specified but tools are provided,
# default to "auto" tool_choice
if "tool_choice" not in data and data.get("tools"):
data["tool_choice"] = "auto"
# if "tool_choice" is "none" -- ignore tools if present
if "tool_choice" in data and data["tool_choice"] == "none":
# ensure that no tools are present
data.pop("tools", None)
return data
# if "tool_choice" is specified -- validation
if "tool_choice" in data:
# ensure that if "tool choice" is specified, tools are present
if "tools" not in data or data["tools"] is None:
raise ValueError(
"When using `tool_choice`, `tools` must be set.")
# make sure that tool choice is either a named tool
# OR that it's set to "auto" or "required"
if data["tool_choice"] not in [
"auto", "required"
] and not isinstance(data["tool_choice"], dict):
raise NotImplementedError(
f'Invalid value for `tool_choice`: {data["tool_choice"]}! '\
'Only named tools, "none", "auto" or "required" '\
'are supported.'
)
# ensure that if "tool_choice" is specified as an object,
# it matches a valid tool
if isinstance(data["tool_choice"], dict):
valid_tool = False
specified_function = data["tool_choice"].get("function")
if not specified_function:
raise ValueError(
"Expected field `function` in `tool_choice`."
" Correct usage: `{\"type\": \"function\","
" \"function\": {\"name\": \"my_function\"}}`")
specified_function_name = specified_function.get("name")
if not specified_function_name:
raise ValueError(
"Expected field `name` in `function` in `tool_choice`."
"Correct usage: `{\"type\": \"function\", "
"\"function\": {\"name\": \"my_function\"}}`")
for tool in data["tools"]:
if tool["function"]["name"] == specified_function_name:
valid_tool = True
break
if not valid_tool:
raise ValueError(
"The tool specified in `tool_choice` does not match any"
" of the specified `tools`")
return data
@model_validator(mode="before")
@classmethod
def check_generation_prompt(cls, data):
if data.get("continue_final_message") and data.get(
"add_generation_prompt"):
raise ValueError("Cannot set both `continue_final_message` and "
"`add_generation_prompt` to True.")
return data
@model_validator(mode="before")
@classmethod
def check_cache_salt_support(cls, data):
if data.get("cache_salt") is not None:
if not envs.VLLM_USE_V1:
raise ValueError(
"Parameter 'cache_salt' is not supported with "
"this instance of vLLM, which uses engine V0.")
if not isinstance(data["cache_salt"],
str) or not data["cache_salt"]:
raise ValueError("Parameter 'cache_salt' must be a "
"non-empty string if provided.")
return data
class CompletionRequest(OpenAIBaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/completions/create
model: Optional[str] = None
prompt: Optional[Union[list[int], list[list[int]], str, list[str]]] = None
prompt_embeds: Optional[Union[bytes, list[bytes]]] = None
best_of: Optional[int] = None
echo: Optional[bool] = False
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[dict[str, float]] = None
logprobs: Optional[int] = None
max_tokens: Optional[int] = 16
n: int = 1
presence_penalty: Optional[float] = 0.0
seed: Optional[int] = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
stop: Optional[Union[str, list[str]]] = []
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
suffix: Optional[str] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
user: Optional[str] = None
# --8<-- [start:completion-sampling-params]
use_beam_search: bool = False
top_k: Optional[int] = None
min_p: Optional[float] = None
repetition_penalty: Optional[float] = None
length_penalty: float = 1.0
stop_token_ids: Optional[list[int]] = []
include_stop_str_in_output: bool = False
ignore_eos: bool = False
min_tokens: int = 0
skip_special_tokens: bool = True
spaces_between_special_tokens: bool = True
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
allowed_token_ids: Optional[list[int]] = None
prompt_logprobs: Optional[int] = None
# --8<-- [end:completion-sampling-params]
# --8<-- [start:completion-extra-params]
add_special_tokens: bool = Field(
default=True,
description=(
"If true (the default), special tokens (e.g. BOS) will be added to "
"the prompt."),
)
response_format: Optional[AnyResponseFormat] = Field(
default=None,
description=(
"Similar to chat completion, this parameter specifies the format "
"of output. Only {'type': 'json_object'}, {'type': 'json_schema'}"
", {'type': 'structural_tag'}, or {'type': 'text' } is supported."
),
)
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
default=None,
description="If specified, the output will follow the JSON schema.",
)
guided_regex: Optional[str] = Field(
default=None,
description=(
"If specified, the output will follow the regex pattern."),
)
guided_choice: Optional[list[str]] = Field(
default=None,
description=(
"If specified, the output will be exactly one of the choices."),
)
guided_grammar: Optional[str] = Field(
default=None,
description=(
"If specified, the output will follow the context free grammar."),
)
guided_decoding_backend: Optional[str] = Field(
default=None,
description=(
"If specified, will override the default guided decoding backend "
"of the server for this specific request. If set, must be one of "
"'outlines' / 'lm-format-enforcer'"),
)
guided_whitespace_pattern: Optional[str] = Field(
default=None,
description=(
"If specified, will override the default whitespace pattern "
"for guided json decoding."),
)
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."),
)
logits_processors: Optional[LogitsProcessors] = Field(
default=None,
description=(
"A list of either qualified names of logits processors, or "
"constructor objects, to apply when sampling. A constructor is "
"a JSON object with a required 'qualname' field specifying the "
"qualified name of the processor class/factory, and optional "
"'args' and 'kwargs' fields containing positional and keyword "
"arguments. For example: {'qualname': "
"'my_module.MyLogitsProcessor', 'args': [1, 2], 'kwargs': "
"{'param': 'value'}}."))
return_tokens_as_token_ids: Optional[bool] = Field(
default=None,
description=(
"If specified with 'logprobs', tokens are represented "
" as strings of the form 'token_id:{token_id}' so that tokens "
"that are not JSON-encodable can be identified."))
kv_transfer_params: Optional[dict[str, Any]] = Field(
default=None,
description="KVTransfer parameters used for disaggregated serving.")
# --8<-- [end:completion-extra-params]
# Default sampling parameters for completion requests
_DEFAULT_SAMPLING_PARAMS: dict = {
"repetition_penalty": 1.0,
"temperature": 1.0,
"top_p": 1.0,
"top_k": 0,
"min_p": 0.0,
}
def to_beam_search_params(
self,
default_max_tokens: int,
default_sampling_params: Optional[dict] = None
) -> BeamSearchParams:
max_tokens = self.max_tokens
if default_sampling_params is None:
default_sampling_params = {}
n = self.n if self.n is not None else 1
# Use minimum of context window, user request & server limit.
max_tokens = min(
val for val in (default_max_tokens, max_tokens,
default_sampling_params.get("max_tokens", None))
if val is not None)
if (temperature := self.temperature) is None:
temperature = default_sampling_params.get("temperature", 1.0)
return BeamSearchParams(
beam_width=n,
max_tokens=max_tokens,
ignore_eos=self.ignore_eos,
temperature=temperature,
length_penalty=self.length_penalty,
include_stop_str_in_output=self.include_stop_str_in_output,
)
def to_sampling_params(
self,
default_max_tokens: int,
logits_processor_pattern: Optional[str],
default_sampling_params: Optional[dict] = None,
) -> SamplingParams:
max_tokens = self.max_tokens
if default_sampling_params is None:
default_sampling_params = {}
# Use minimum of context window, user request & server limit.
max_tokens = min(
val for val in (default_max_tokens, max_tokens,
default_sampling_params.get("max_tokens", None))
if val is not None)
# Default parameters
if (repetition_penalty := self.repetition_penalty) is None:
repetition_penalty = default_sampling_params.get(
"repetition_penalty",
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
)
if (temperature := self.temperature) is None:
temperature = default_sampling_params.get(
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
if (top_p := self.top_p) is None:
top_p = default_sampling_params.get(
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"])
if (top_k := self.top_k) is None:
top_k = default_sampling_params.get(
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"])
if (min_p := self.min_p) is None:
min_p = default_sampling_params.get(
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"])
prompt_logprobs = self.prompt_logprobs
if prompt_logprobs is None and self.echo:
prompt_logprobs = self.logprobs
echo_without_generation = self.echo and self.max_tokens == 0
guided_json_object = None
if (self.response_format is not None
and self.response_format.type == "json_object"):
guided_json_object = True
guided_decoding = GuidedDecodingParams.from_optional(
json=self.guided_json,
regex=self.guided_regex,
choice=self.guided_choice,
grammar=self.guided_grammar,
json_object=guided_json_object,
backend=self.guided_decoding_backend,
whitespace_pattern=self.guided_whitespace_pattern,
)
return SamplingParams.from_optional(
n=self.n,
best_of=self.best_of,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
repetition_penalty=repetition_penalty,
temperature=temperature,
top_p=top_p,
top_k=top_k,
min_p=min_p,
seed=self.seed,
stop=self.stop,
stop_token_ids=self.stop_token_ids,
logprobs=self.logprobs,
ignore_eos=self.ignore_eos,
max_tokens=max_tokens if not echo_without_generation else 1,
min_tokens=self.min_tokens,
prompt_logprobs=prompt_logprobs,
skip_special_tokens=self.skip_special_tokens,
spaces_between_special_tokens=self.spaces_between_special_tokens,
include_stop_str_in_output=self.include_stop_str_in_output,
logits_processors=get_logits_processors(self.logits_processors,
logits_processor_pattern),
truncate_prompt_tokens=self.truncate_prompt_tokens,
output_kind=RequestOutputKind.DELTA if self.stream \
else RequestOutputKind.FINAL_ONLY,
guided_decoding=guided_decoding,
logit_bias=self.logit_bias,
allowed_token_ids=self.allowed_token_ids,
extra_args=({"kv_transfer_params": self.kv_transfer_params}
if self.kv_transfer_params else None))
@model_validator(mode="before")
@classmethod
def check_guided_decoding_count(cls, data):
guide_count = sum([
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None
])
if guide_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex' or 'guided_choice').")
return data
@model_validator(mode="before")
@classmethod
def check_logprobs(cls, data):
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
if data.get("stream") and prompt_logprobs > 0:
raise ValueError(
"`prompt_logprobs` are not available when `stream=True`.")
if prompt_logprobs < 0:
raise ValueError("`prompt_logprobs` must be a positive value.")
if (logprobs := data.get("logprobs")) is not None and logprobs < 0:
raise ValueError("`logprobs` must be a positive value.")
return data
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
if data.get("stream_options") and not data.get("stream"):
raise ValueError(
"Stream options can only be defined when `stream=True`.")
return data
@model_validator(mode="before")
@classmethod
def validate_prompt_and_prompt_embeds(cls, data):
if data.get("prompt") is None and data.get("prompt_embeds") is None:
raise ValueError(
"At least one of `prompt` or `prompt_embeds` must be set.")
return data
class EmbeddingCompletionRequest(OpenAIBaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/embeddings
model: Optional[str] = None
input: Union[list[int], list[list[int]], str, list[str]]
encoding_format: Literal["float", "base64"] = "float"
dimensions: Optional[int] = None
user: Optional[str] = None
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
# --8<-- [start:embedding-pooling-params]
additional_data: Optional[Any] = None
# --8<-- [end:embedding-pooling-params]
# --8<-- [start:embedding-extra-params]
add_special_tokens: bool = Field(
default=True,
description=(
"If true (the default), special tokens (e.g. BOS) will be added to "
"the prompt."),
)
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."),
)
# --8<-- [end:embedding-extra-params]
def to_pooling_params(self):
return PoolingParams(dimensions=self.dimensions,
additional_data=self.additional_data)
class EmbeddingChatRequest(OpenAIBaseModel):
model: Optional[str] = None
messages: list[ChatCompletionMessageParam]
encoding_format: Literal["float", "base64"] = "float"
dimensions: Optional[int] = None
user: Optional[str] = None
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
# --8<-- [start:chat-embedding-pooling-params]
additional_data: Optional[Any] = None
# --8<-- [end:chat-embedding-pooling-params]
# --8<-- [start:chat-embedding-extra-params]
add_special_tokens: bool = Field(
default=False,
description=(
"If true, special tokens (e.g. BOS) will be added to the prompt "
"on top of what is added by the chat template. "
"For most models, the chat template takes care of adding the "
"special tokens so this should be set to false (as is the "
"default)."),
)
chat_template: Optional[str] = Field(
default=None,
description=(
"A Jinja template to use for this conversion. "
"As of transformers v4.44, default chat template is no longer "
"allowed, so you must provide a chat template if the tokenizer "
"does not define one."),
)
chat_template_kwargs: Optional[dict[str, Any]] = Field(
default=None,
description=("Additional kwargs to pass to the template renderer. "
"Will be accessible by the chat template."),
)
mm_processor_kwargs: Optional[dict[str, Any]] = Field(
default=None,
description=("Additional kwargs to pass to the HF processor."),
)
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."),
)
# --8<-- [end:chat-embedding-extra-params]
@model_validator(mode="before")
@classmethod
def check_generation_prompt(cls, data):
if data.get("continue_final_message") and data.get(
"add_generation_prompt"):
raise ValueError("Cannot set both `continue_final_message` and "
"`add_generation_prompt` to True.")
return data
def to_pooling_params(self):
return PoolingParams(dimensions=self.dimensions,
additional_data=self.additional_data)
EmbeddingRequest = Union[EmbeddingCompletionRequest, EmbeddingChatRequest]
PoolingCompletionRequest = EmbeddingCompletionRequest
PoolingChatRequest = EmbeddingChatRequest
PoolingRequest = Union[PoolingCompletionRequest, PoolingChatRequest]
class ScoreRequest(OpenAIBaseModel):
model: Optional[str] = None
text_1: Union[list[str], str]
text_2: Union[list[str], str]
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
# --8<-- [start:score-pooling-params]
additional_data: Optional[Any] = None
# --8<-- [end:score-pooling-params]
# --8<-- [start:score-extra-params]
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."),
)
# --8<-- [end:score-extra-params]
def to_pooling_params(self):
return PoolingParams(additional_data=self.additional_data)
class RerankRequest(OpenAIBaseModel):
model: Optional[str] = None
query: str
documents: list[str]
top_n: int = Field(default_factory=lambda: 0)
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
# --8<-- [start:rerank-pooling-params]
additional_data: Optional[Any] = None
# --8<-- [end:rerank-pooling-params]
# --8<-- [start:rerank-extra-params]
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."),
)
# --8<-- [end:rerank-extra-params]
def to_pooling_params(self):
return PoolingParams(additional_data=self.additional_data)
class RerankDocument(BaseModel):
text: str
class RerankResult(BaseModel):
index: int
document: RerankDocument
relevance_score: float
class RerankUsage(BaseModel):
total_tokens: int
class RerankResponse(OpenAIBaseModel):
id: str
model: str
usage: RerankUsage
results: list[RerankResult]
class CompletionLogProbs(OpenAIBaseModel):
text_offset: list[int] = Field(default_factory=list)
token_logprobs: list[Optional[float]] = Field(default_factory=list)
tokens: list[str] = Field(default_factory=list)
top_logprobs: list[Optional[dict[str,
float]]] = Field(default_factory=list)
class CompletionResponseChoice(OpenAIBaseModel):
index: int
text: str
logprobs: Optional[CompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = Field(
default=None,
description=(
"The stop string or token id that caused the completion "
"to stop, None if the completion finished for some other reason "
"including encountering the EOS token"),
)
prompt_logprobs: Optional[list[Optional[dict[int, Logprob]]]] = None
class CompletionResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: list[CompletionResponseChoice]
usage: UsageInfo
kv_transfer_params: Optional[dict[str, Any]] = Field(
default=None, description="KVTransfer parameters.")
class CompletionResponseStreamChoice(OpenAIBaseModel):
index: int
text: str
logprobs: Optional[CompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = Field(
default=None,
description=(
"The stop string or token id that caused the completion "
"to stop, None if the completion finished for some other reason "
"including encountering the EOS token"),
)
class CompletionStreamResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: list[CompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(default=None)
class EmbeddingResponseData(OpenAIBaseModel):
index: int
object: str = "embedding"
embedding: Union[list[float], str]
class EmbeddingResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"embd-{random_uuid()}")
object: str = "list"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
data: list[EmbeddingResponseData]
usage: UsageInfo
class PoolingResponseData(OpenAIBaseModel):
index: int
object: str = "pooling"
data: Union[list[list[float]], list[float], str]
class PoolingResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"pool-{random_uuid()}")
object: str = "list"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
data: list[PoolingResponseData]
usage: UsageInfo
class ScoreResponseData(OpenAIBaseModel):
index: int
object: str = "score"
score: float
class ScoreResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"embd-{random_uuid()}")
object: str = "list"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
data: list[ScoreResponseData]
usage: UsageInfo
class ClassificationRequest(OpenAIBaseModel):
model: Optional[str] = None
input: Union[list[str], str]
truncate_prompt_tokens: Optional[int] = None
user: Optional[str] = None
# --8<-- [start:classification-pooling-params]
additional_data: Optional[Any] = None
# --8<-- [end:classification-pooling-params]
# --8<-- [start:classification-extra-params]
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."),
)
# --8<-- [end:classification-extra-params]
def to_pooling_params(self):
return PoolingParams(additional_data=self.additional_data)
class ClassificationData(OpenAIBaseModel):
index: int
label: Optional[str]
probs: list[float]
num_classes: int
class ClassificationResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"classify-{random_uuid()}")
object: str = "list"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
data: list[ClassificationData]
usage: UsageInfo
class FunctionCall(OpenAIBaseModel):
name: str
arguments: str
class ToolCall(OpenAIBaseModel):
id: str = Field(default_factory=random_tool_call_id)
type: Literal["function"] = "function"
function: FunctionCall
class DeltaFunctionCall(BaseModel):
name: Optional[str] = None
arguments: Optional[str] = None
# a tool call delta where everything is optional
class DeltaToolCall(OpenAIBaseModel):
id: Optional[str] = None
type: Optional[Literal["function"]] = None
index: int
function: Optional[DeltaFunctionCall] = None
class ExtractedToolCallInformation(BaseModel):
# indicate if tools were called
tools_called: bool
# extracted tool calls
tool_calls: list[ToolCall]
# content - per OpenAI spec, content AND tool calls can be returned rarely
# But some models will do this intentionally
content: Optional[str] = None
class ChatMessage(OpenAIBaseModel):
role: str
reasoning_content: Optional[str] = None
content: Optional[str] = None
tool_calls: list[ToolCall] = Field(default_factory=list)
class ChatCompletionLogProb(OpenAIBaseModel):
token: str
logprob: float = -9999.0
bytes: Optional[list[int]] = None
class ChatCompletionLogProbsContent(ChatCompletionLogProb):
# Workaround: redefine fields name cache so that it's not
# shared with the super class.
field_names: ClassVar[Optional[set[str]]] = None
top_logprobs: list[ChatCompletionLogProb] = Field(default_factory=list)
class ChatCompletionLogProbs(OpenAIBaseModel):
content: Optional[list[ChatCompletionLogProbsContent]] = None
class ChatCompletionResponseChoice(OpenAIBaseModel):
index: int
message: ChatMessage
logprobs: Optional[ChatCompletionLogProbs] = None
# per OpenAI spec this is the default
finish_reason: Optional[str] = "stop"
# not part of the OpenAI spec but included in vLLM for legacy reasons
stop_reason: Optional[Union[int, str]] = None
class ChatCompletionResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
object: Literal["chat.completion"] = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: list[ChatCompletionResponseChoice]
usage: UsageInfo
prompt_logprobs: Optional[list[Optional[dict[int, Logprob]]]] = None
kv_transfer_params: Optional[dict[str, Any]] = Field(
default=None, description="KVTransfer parameters.")
class DeltaMessage(OpenAIBaseModel):
role: Optional[str] = None
content: Optional[str] = None
reasoning_content: Optional[str] = None
tool_calls: list[DeltaToolCall] = Field(default_factory=list)
class ChatCompletionResponseStreamChoice(OpenAIBaseModel):
index: int
delta: DeltaMessage
logprobs: Optional[ChatCompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = None
class ChatCompletionStreamResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: list[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(default=None)
class TranscriptionResponseStreamChoice(OpenAIBaseModel):
delta: DeltaMessage
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = None
class TranscriptionStreamResponse(OpenAIBaseModel):
id: str = Field(default_factory=lambda: f"trsc-{random_uuid()}")
object: Literal["transcription.chunk"] = "transcription.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: list[TranscriptionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(default=None)
class BatchRequestInput(OpenAIBaseModel):
"""
The per-line object of the batch input file.
NOTE: Currently only the `/v1/chat/completions` endpoint is supported.
"""
# A developer-provided per-request id that will be used to match outputs to
# inputs. Must be unique for each request in a batch.
custom_id: str
# The HTTP method to be used for the request. Currently only POST is
# supported.
method: str
# The OpenAI API relative URL to be used for the request. Currently
# /v1/chat/completions is supported.
url: str
# The parameters of the request.
body: Union[ChatCompletionRequest, EmbeddingRequest, ScoreRequest]
@field_validator('body', mode='plain')
@classmethod
def check_type_for_url(cls, value: Any, info: ValidationInfo):
# Use url to disambiguate models
url = info.data['url']
if url == "/v1/chat/completions":
return ChatCompletionRequest.model_validate(value)
if url == "/v1/embeddings":
return TypeAdapter(EmbeddingRequest).validate_python(value)
if url == "/v1/score":
return ScoreRequest.model_validate(value)
return TypeAdapter(Union[ChatCompletionRequest, EmbeddingRequest,
ScoreRequest]).validate_python(value)
class BatchResponseData(OpenAIBaseModel):
# HTTP status code of the response.
status_code: int = 200
# An unique identifier for the API request.
request_id: str
# The body of the response.
body: Optional[Union[ChatCompletionResponse, EmbeddingResponse,
ScoreResponse]] = None
class BatchRequestOutput(OpenAIBaseModel):
"""
The per-line object of the batch output and error files
"""
id: str
# A developer-provided per-request id that will be used to match outputs to
# inputs.
custom_id: str
response: Optional[BatchResponseData]
# For requests that failed with a non-HTTP error, this will contain more
# information on the cause of the failure.
error: Optional[Any]
class TokenizeCompletionRequest(OpenAIBaseModel):
model: Optional[str] = None
prompt: str
add_special_tokens: bool = Field(
default=True,
description=(
"If true (the default), special tokens (e.g. BOS) will be added to "
"the prompt."),
)
class TokenizeChatRequest(OpenAIBaseModel):
model: Optional[str] = None
messages: list[ChatCompletionMessageParam]
add_generation_prompt: bool = Field(
default=True,
description=
("If true, the generation prompt will be added to the chat template. "
"This is a parameter used by chat template in tokenizer config of the "
"model."),
)
continue_final_message: bool = Field(
default=False,
description=
("If this is set, the chat will be formatted so that the final "
"message in the chat is open-ended, without any EOS tokens. The "
"model will continue this message rather than starting a new one. "
"This allows you to \"prefill\" part of the model's response for it. "
"Cannot be used at the same time as `add_generation_prompt`."),
)
add_special_tokens: bool = Field(
default=False,
description=(
"If true, special tokens (e.g. BOS) will be added to the prompt "
"on top of what is added by the chat template. "
"For most models, the chat template takes care of adding the "
"special tokens so this should be set to false (as is the "
"default)."),
)
chat_template: Optional[str] = Field(
default=None,
description=(
"A Jinja template to use for this conversion. "
"As of transformers v4.44, default chat template is no longer "
"allowed, so you must provide a chat template if the tokenizer "
"does not define one."),
)
chat_template_kwargs: Optional[dict[str, Any]] = Field(
default=None,
description=("Additional kwargs to pass to the template renderer. "
"Will be accessible by the chat template."),
)
mm_processor_kwargs: Optional[dict[str, Any]] = Field(
default=None,
description=("Additional kwargs to pass to the HF processor."),
)
tools: Optional[list[ChatCompletionToolsParam]] = Field(
default=None,
description=("A list of tools the model may call."),
)
@model_validator(mode="before")
@classmethod
def check_generation_prompt(cls, data):
if data.get("continue_final_message") and data.get(
"add_generation_prompt"):
raise ValueError("Cannot set both `continue_final_message` and "
"`add_generation_prompt` to True.")
return data
TokenizeRequest = Union[TokenizeCompletionRequest, TokenizeChatRequest]
class TokenizeResponse(OpenAIBaseModel):
count: int
max_model_len: int
tokens: list[int]
class DetokenizeRequest(OpenAIBaseModel):
model: Optional[str] = None
tokens: list[int]
class DetokenizeResponse(OpenAIBaseModel):
prompt: str
class LoadLoRAAdapterRequest(BaseModel):
lora_name: str
lora_path: str
class UnloadLoRAAdapterRequest(BaseModel):
lora_name: str
lora_int_id: Optional[int] = Field(default=None)
## Protocols for Audio
AudioResponseFormat: TypeAlias = Literal["json", "text", "srt", "verbose_json",
"vtt"]
class TranscriptionRequest(OpenAIBaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/audio/createTranscription
file: UploadFile
"""
The audio file object (not file name) to transcribe, in one of these
formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
"""
model: Optional[str] = None
"""ID of the model to use.
"""
language: Optional[str] = None
"""The language of the input audio.
Supplying the input language in
[ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format
will improve accuracy and latency.
"""
prompt: str = Field(default="")
"""An optional text to guide the model's style or continue a previous audio
segment.
The [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting)
should match the audio language.
"""
response_format: AudioResponseFormat = Field(default="json")
"""
The format of the output, in one of these options: `json`, `text`, `srt`,
`verbose_json`, or `vtt`.
"""
## TODO (varun) : Support if set to 0, certain thresholds are met !!
timestamp_granularities: list[Literal["word", "segment"]] = Field(
alias="timestamp_granularities[]", default=[])
"""The timestamp granularities to populate for this transcription.
`response_format` must be set `verbose_json` to use timestamp granularities.
Either or both of these options are supported: `word`, or `segment`. Note:
There is no additional latency for segment timestamps, but generating word
timestamps incurs additional latency.
"""
# --8<-- [start:transcription-extra-params]
stream: Optional[bool] = False
"""Custom field not present in the original OpenAI definition. When set,
it will enable output to be streamed in a similar fashion as the Chat
Completion endpoint.
"""
# Flattened stream option to simplify form data.
stream_include_usage: Optional[bool] = False
stream_continuous_usage_stats: Optional[bool] = False
# --8<-- [end:transcription-extra-params]
# --8<-- [start:transcription-sampling-params]
temperature: float = Field(default=0.0)
"""The sampling temperature, between 0 and 1.
Higher values like 0.8 will make the output more random, while lower values
like 0.2 will make it more focused / deterministic. If set to 0, the model
will use [log probability](https://en.wikipedia.org/wiki/Log_probability)
to automatically increase the temperature until certain thresholds are hit.
"""
top_p: Optional[float] = None
"""Enables nucleus (top-p) sampling, where tokens are selected from the
smallest possible set whose cumulative probability exceeds `p`.
"""
top_k: Optional[int] = None
"""Limits sampling to the `k` most probable tokens at each step."""
min_p: Optional[float] = None
"""Filters out tokens with a probability lower than `min_p`, ensuring a
minimum likelihood threshold during sampling.
"""
seed: Optional[int] = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
"""The seed to use for sampling."""
frequency_penalty: Optional[float] = 0.0
"""The frequency penalty to use for sampling."""
repetition_penalty: Optional[float] = None
"""The repetition penalty to use for sampling."""
presence_penalty: Optional[float] = 0.0
"""The presence penalty to use for sampling."""
# --8<-- [end:transcription-sampling-params]
# Default sampling parameters for transcription requests.
_DEFAULT_SAMPLING_PARAMS: dict = {
"repetition_penalty": 1.0,
"temperature": 1.0,
"top_p": 1.0,
"top_k": 0,
"min_p": 0.0,
}
def to_sampling_params(
self,
default_max_tokens: int,
default_sampling_params: Optional[dict] = None) -> SamplingParams:
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
max_tokens = default_max_tokens
if default_sampling_params is None:
default_sampling_params = {}
# Default parameters
if (temperature := self.temperature) is None:
temperature = default_sampling_params.get(
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
if (top_p := self.top_p) is None:
top_p = default_sampling_params.get(
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"])
if (top_k := self.top_k) is None:
top_k = default_sampling_params.get(
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"])
if (min_p := self.min_p) is None:
min_p = default_sampling_params.get(
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"])
if (repetition_penalty := self.repetition_penalty) is None:
repetition_penalty = default_sampling_params.get(
"repetition_penalty",
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"])
return SamplingParams.from_optional(temperature=temperature,
max_tokens=max_tokens,
seed=self.seed,
top_p=top_p,
top_k=top_k,
min_p=min_p,
frequency_penalty=self.frequency_penalty,
repetition_penalty=repetition_penalty,
presence_penalty=self.presence_penalty,
output_kind=RequestOutputKind.DELTA
if self.stream \
else RequestOutputKind.FINAL_ONLY)
@model_validator(mode="before")
@classmethod
def validate_transcription_request(cls, data):
if isinstance(data.get("file"), str):
raise HTTPException(
status_code=HTTPStatus.UNPROCESSABLE_ENTITY,
detail="Expected 'file' to be a file-like object, not 'str'.",
)
stream_opts = ["stream_include_usage", "stream_continuous_usage_stats"]
stream = data.get("stream", False)
if any(bool(data.get(so, False)) for so in stream_opts) and not stream:
raise ValueError(
"Stream options can only be defined when `stream=True`.")
return data
# Transcription response objects
class TranscriptionResponse(OpenAIBaseModel):
text: str
"""The transcribed text."""
class TranscriptionWord(OpenAIBaseModel):
end: float
"""End time of the word in seconds."""
start: float
"""Start time of the word in seconds."""
word: str
"""The text content of the word."""
class TranscriptionSegment(OpenAIBaseModel):
id: int
"""Unique identifier of the segment."""
avg_logprob: float
"""Average logprob of the segment.
If the value is lower than -1, consider the logprobs failed.
"""
compression_ratio: float
"""Compression ratio of the segment.
If the value is greater than 2.4, consider the compression failed.
"""
end: float
"""End time of the segment in seconds."""
no_speech_prob: float
"""Probability of no speech in the segment.
If the value is higher than 1.0 and the `avg_logprob` is below -1, consider
this segment silent.
"""
seek: int
"""Seek offset of the segment."""
start: float
"""Start time of the segment in seconds."""
temperature: float
"""Temperature parameter used for generating the segment."""
text: str
"""Text content of the segment."""
tokens: list[int]
"""Array of token IDs for the text content."""
class TranscriptionResponseVerbose(OpenAIBaseModel):
duration: str
"""The duration of the input audio."""
language: str
"""The language of the input audio."""
text: str
"""The transcribed text."""
segments: Optional[list[TranscriptionSegment]] = None
"""Segments of the transcribed text and their corresponding details."""
words: Optional[list[TranscriptionWord]] = None
"""Extracted words and their corresponding timestamps."""