1895 lines
68 KiB
Python
1895 lines
68 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Adapted from
|
|
# https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/protocol/openai_api_protocol.py
|
|
import json
|
|
import time
|
|
from http import HTTPStatus
|
|
from typing import Annotated, Any, ClassVar, Literal, Optional, Union
|
|
|
|
import regex as re
|
|
import torch
|
|
from fastapi import HTTPException, UploadFile
|
|
from pydantic import (BaseModel, ConfigDict, Field, TypeAdapter,
|
|
ValidationInfo, field_validator, model_validator)
|
|
from typing_extensions import TypeAlias
|
|
|
|
from vllm import envs
|
|
from vllm.entrypoints.chat_utils import (ChatCompletionMessageParam,
|
|
random_tool_call_id)
|
|
from vllm.logger import init_logger
|
|
from vllm.pooling_params import PoolingParams
|
|
from vllm.sampling_params import (BeamSearchParams, GuidedDecodingParams,
|
|
RequestOutputKind, SamplingParams)
|
|
from vllm.sequence import Logprob
|
|
from vllm.utils import random_uuid, resolve_obj_by_qualname
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
_LONG_INFO = torch.iinfo(torch.long)
|
|
|
|
|
|
class OpenAIBaseModel(BaseModel):
|
|
# OpenAI API does allow extra fields
|
|
model_config = ConfigDict(extra="allow")
|
|
|
|
# Cache class field names
|
|
field_names: ClassVar[Optional[set[str]]] = None
|
|
|
|
@model_validator(mode="wrap")
|
|
@classmethod
|
|
def __log_extra_fields__(cls, data, handler):
|
|
result = handler(data)
|
|
if not isinstance(data, dict):
|
|
return result
|
|
field_names = cls.field_names
|
|
if field_names is None:
|
|
# Get all class field names and their potential aliases
|
|
field_names = set()
|
|
for field_name, field in cls.model_fields.items():
|
|
field_names.add(field_name)
|
|
if alias := getattr(field, "alias", None):
|
|
field_names.add(alias)
|
|
cls.field_names = field_names
|
|
|
|
# Compare against both field names and aliases
|
|
if any(k not in field_names for k in data):
|
|
logger.warning(
|
|
"The following fields were present in the request "
|
|
"but ignored: %s",
|
|
data.keys() - field_names,
|
|
)
|
|
return result
|
|
|
|
|
|
class ErrorResponse(OpenAIBaseModel):
|
|
object: str = "error"
|
|
message: str
|
|
type: str
|
|
param: Optional[str] = None
|
|
code: int
|
|
|
|
|
|
class ModelPermission(OpenAIBaseModel):
|
|
id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
|
|
object: str = "model_permission"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
allow_create_engine: bool = False
|
|
allow_sampling: bool = True
|
|
allow_logprobs: bool = True
|
|
allow_search_indices: bool = False
|
|
allow_view: bool = True
|
|
allow_fine_tuning: bool = False
|
|
organization: str = "*"
|
|
group: Optional[str] = None
|
|
is_blocking: bool = False
|
|
|
|
|
|
class ModelCard(OpenAIBaseModel):
|
|
id: str
|
|
object: str = "model"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
owned_by: str = "vllm"
|
|
root: Optional[str] = None
|
|
parent: Optional[str] = None
|
|
max_model_len: Optional[int] = None
|
|
permission: list[ModelPermission] = Field(default_factory=list)
|
|
|
|
|
|
class ModelList(OpenAIBaseModel):
|
|
object: str = "list"
|
|
data: list[ModelCard] = Field(default_factory=list)
|
|
|
|
|
|
class PromptTokenUsageInfo(OpenAIBaseModel):
|
|
cached_tokens: Optional[int] = None
|
|
|
|
|
|
class UsageInfo(OpenAIBaseModel):
|
|
prompt_tokens: int = 0
|
|
total_tokens: int = 0
|
|
completion_tokens: Optional[int] = 0
|
|
prompt_tokens_details: Optional[PromptTokenUsageInfo] = None
|
|
|
|
|
|
class RequestResponseMetadata(BaseModel):
|
|
request_id: str
|
|
final_usage_info: Optional[UsageInfo] = None
|
|
|
|
|
|
class JsonSchemaResponseFormat(OpenAIBaseModel):
|
|
name: str
|
|
description: Optional[str] = None
|
|
# schema is the field in openai but that causes conflicts with pydantic so
|
|
# instead use json_schema with an alias
|
|
json_schema: Optional[dict[str, Any]] = Field(default=None, alias='schema')
|
|
strict: Optional[bool] = None
|
|
|
|
|
|
class StructuralTag(OpenAIBaseModel):
|
|
begin: str
|
|
# schema is the field, but that causes conflicts with pydantic so
|
|
# instead use structural_tag_schema with an alias
|
|
structural_tag_schema: Optional[dict[str, Any]] = Field(default=None,
|
|
alias="schema")
|
|
end: str
|
|
|
|
|
|
class StructuralTagResponseFormat(OpenAIBaseModel):
|
|
type: Literal["structural_tag"]
|
|
structures: list[StructuralTag]
|
|
triggers: list[str]
|
|
|
|
|
|
class ResponseFormat(OpenAIBaseModel):
|
|
# type must be "json_schema", "json_object", or "text"
|
|
type: Literal["text", "json_object", "json_schema"]
|
|
json_schema: Optional[JsonSchemaResponseFormat] = None
|
|
|
|
|
|
AnyResponseFormat = Union[ResponseFormat, StructuralTagResponseFormat]
|
|
|
|
|
|
class StreamOptions(OpenAIBaseModel):
|
|
include_usage: Optional[bool] = True
|
|
continuous_usage_stats: Optional[bool] = False
|
|
|
|
|
|
class FunctionDefinition(OpenAIBaseModel):
|
|
name: str
|
|
description: Optional[str] = None
|
|
parameters: Optional[dict[str, Any]] = None
|
|
|
|
|
|
class ChatCompletionToolsParam(OpenAIBaseModel):
|
|
type: Literal["function"] = "function"
|
|
function: FunctionDefinition
|
|
|
|
|
|
class ChatCompletionNamedFunction(OpenAIBaseModel):
|
|
name: str
|
|
|
|
|
|
class ChatCompletionNamedToolChoiceParam(OpenAIBaseModel):
|
|
function: ChatCompletionNamedFunction
|
|
type: Literal["function"] = "function"
|
|
|
|
|
|
# extra="forbid" is a workaround to have kwargs as a field,
|
|
# see https://github.com/pydantic/pydantic/issues/3125
|
|
class LogitsProcessorConstructor(BaseModel):
|
|
qualname: str
|
|
args: Optional[list[Any]] = None
|
|
kwargs: Optional[dict[str, Any]] = None
|
|
|
|
model_config = ConfigDict(extra="forbid")
|
|
|
|
|
|
LogitsProcessors = list[Union[str, LogitsProcessorConstructor]]
|
|
|
|
|
|
def get_logits_processors(processors: Optional[LogitsProcessors],
|
|
pattern: Optional[str]) -> Optional[list[Any]]:
|
|
if processors and pattern:
|
|
logits_processors = []
|
|
for processor in processors:
|
|
qualname = processor if isinstance(processor,
|
|
str) else processor.qualname
|
|
if not re.match(pattern, qualname):
|
|
raise ValueError(
|
|
f"Logits processor '{qualname}' is not allowed by this "
|
|
"server. See --logits-processor-pattern engine argument "
|
|
"for more information.")
|
|
try:
|
|
logits_processor = resolve_obj_by_qualname(qualname)
|
|
except Exception as e:
|
|
raise ValueError(
|
|
f"Logits processor '{qualname}' could not be resolved: {e}"
|
|
) from e
|
|
if isinstance(processor, LogitsProcessorConstructor):
|
|
logits_processor = logits_processor(*processor.args or [],
|
|
**processor.kwargs or {})
|
|
logits_processors.append(logits_processor)
|
|
return logits_processors
|
|
elif processors:
|
|
raise ValueError(
|
|
"The `logits_processors` argument is not supported by this "
|
|
"server. See --logits-processor-pattern engine argugment "
|
|
"for more information.")
|
|
return None
|
|
|
|
|
|
class ChatCompletionRequest(OpenAIBaseModel):
|
|
# Ordered by official OpenAI API documentation
|
|
# https://platform.openai.com/docs/api-reference/chat/create
|
|
messages: list[ChatCompletionMessageParam]
|
|
model: Optional[str] = None
|
|
frequency_penalty: Optional[float] = 0.0
|
|
logit_bias: Optional[dict[str, float]] = None
|
|
logprobs: Optional[bool] = False
|
|
top_logprobs: Optional[int] = 0
|
|
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
|
|
max_tokens: Optional[int] = Field(
|
|
default=None,
|
|
deprecated=
|
|
'max_tokens is deprecated in favor of the max_completion_tokens field')
|
|
max_completion_tokens: Optional[int] = None
|
|
n: Optional[int] = 1
|
|
presence_penalty: Optional[float] = 0.0
|
|
response_format: Optional[AnyResponseFormat] = None
|
|
seed: Optional[int] = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
|
|
stop: Optional[Union[str, list[str]]] = []
|
|
stream: Optional[bool] = False
|
|
stream_options: Optional[StreamOptions] = None
|
|
temperature: Optional[float] = None
|
|
top_p: Optional[float] = None
|
|
tools: Optional[list[ChatCompletionToolsParam]] = None
|
|
tool_choice: Optional[Union[
|
|
Literal["none"],
|
|
Literal["auto"],
|
|
Literal["required"],
|
|
ChatCompletionNamedToolChoiceParam,
|
|
]] = "none"
|
|
|
|
# NOTE this will be ignored by vLLM -- the model determines the behavior
|
|
parallel_tool_calls: Optional[bool] = False
|
|
user: Optional[str] = None
|
|
|
|
# --8<-- [start:chat-completion-sampling-params]
|
|
best_of: Optional[int] = None
|
|
use_beam_search: bool = False
|
|
top_k: Optional[int] = None
|
|
min_p: Optional[float] = None
|
|
repetition_penalty: Optional[float] = None
|
|
length_penalty: float = 1.0
|
|
stop_token_ids: Optional[list[int]] = []
|
|
include_stop_str_in_output: bool = False
|
|
ignore_eos: bool = False
|
|
min_tokens: int = 0
|
|
skip_special_tokens: bool = True
|
|
spaces_between_special_tokens: bool = True
|
|
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
|
|
prompt_logprobs: Optional[int] = None
|
|
# --8<-- [end:chat-completion-sampling-params]
|
|
|
|
# --8<-- [start:chat-completion-extra-params]
|
|
echo: bool = Field(
|
|
default=False,
|
|
description=(
|
|
"If true, the new message will be prepended with the last message "
|
|
"if they belong to the same role."),
|
|
)
|
|
add_generation_prompt: bool = Field(
|
|
default=True,
|
|
description=
|
|
("If true, the generation prompt will be added to the chat template. "
|
|
"This is a parameter used by chat template in tokenizer config of the "
|
|
"model."),
|
|
)
|
|
continue_final_message: bool = Field(
|
|
default=False,
|
|
description=
|
|
("If this is set, the chat will be formatted so that the final "
|
|
"message in the chat is open-ended, without any EOS tokens. The "
|
|
"model will continue this message rather than starting a new one. "
|
|
"This allows you to \"prefill\" part of the model's response for it. "
|
|
"Cannot be used at the same time as `add_generation_prompt`."),
|
|
)
|
|
add_special_tokens: bool = Field(
|
|
default=False,
|
|
description=(
|
|
"If true, special tokens (e.g. BOS) will be added to the prompt "
|
|
"on top of what is added by the chat template. "
|
|
"For most models, the chat template takes care of adding the "
|
|
"special tokens so this should be set to false (as is the "
|
|
"default)."),
|
|
)
|
|
documents: Optional[list[dict[str, str]]] = Field(
|
|
default=None,
|
|
description=
|
|
("A list of dicts representing documents that will be accessible to "
|
|
"the model if it is performing RAG (retrieval-augmented generation)."
|
|
" If the template does not support RAG, this argument will have no "
|
|
"effect. We recommend that each document should be a dict containing "
|
|
"\"title\" and \"text\" keys."),
|
|
)
|
|
chat_template: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"A Jinja template to use for this conversion. "
|
|
"As of transformers v4.44, default chat template is no longer "
|
|
"allowed, so you must provide a chat template if the tokenizer "
|
|
"does not define one."),
|
|
)
|
|
chat_template_kwargs: Optional[dict[str, Any]] = Field(
|
|
default=None,
|
|
description=("Additional kwargs to pass to the template renderer. "
|
|
"Will be accessible by the chat template."),
|
|
)
|
|
mm_processor_kwargs: Optional[dict[str, Any]] = Field(
|
|
default=None,
|
|
description=("Additional kwargs to pass to the HF processor."),
|
|
)
|
|
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
|
|
default=None,
|
|
description=("If specified, the output will follow the JSON schema."),
|
|
)
|
|
guided_regex: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will follow the regex pattern."),
|
|
)
|
|
guided_choice: Optional[list[str]] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will be exactly one of the choices."),
|
|
)
|
|
guided_grammar: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will follow the context free grammar."),
|
|
)
|
|
structural_tag: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will follow the structural tag schema."),
|
|
)
|
|
guided_decoding_backend: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, will override the default guided decoding backend "
|
|
"of the server for this specific request. If set, must be either "
|
|
"'outlines' / 'lm-format-enforcer'"),
|
|
)
|
|
guided_whitespace_pattern: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, will override the default whitespace pattern "
|
|
"for guided json decoding."),
|
|
)
|
|
priority: int = Field(
|
|
default=0,
|
|
description=(
|
|
"The priority of the request (lower means earlier handling; "
|
|
"default: 0). Any priority other than 0 will raise an error "
|
|
"if the served model does not use priority scheduling."),
|
|
)
|
|
request_id: str = Field(
|
|
default_factory=lambda: f"{random_uuid()}",
|
|
description=(
|
|
"The request_id related to this request. If the caller does "
|
|
"not set it, a random_uuid will be generated. This id is used "
|
|
"through out the inference process and return in response."),
|
|
)
|
|
logits_processors: Optional[LogitsProcessors] = Field(
|
|
default=None,
|
|
description=(
|
|
"A list of either qualified names of logits processors, or "
|
|
"constructor objects, to apply when sampling. A constructor is "
|
|
"a JSON object with a required 'qualname' field specifying the "
|
|
"qualified name of the processor class/factory, and optional "
|
|
"'args' and 'kwargs' fields containing positional and keyword "
|
|
"arguments. For example: {'qualname': "
|
|
"'my_module.MyLogitsProcessor', 'args': [1, 2], 'kwargs': "
|
|
"{'param': 'value'}}."))
|
|
return_tokens_as_token_ids: Optional[bool] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified with 'logprobs', tokens are represented "
|
|
" as strings of the form 'token_id:{token_id}' so that tokens "
|
|
"that are not JSON-encodable can be identified."))
|
|
cache_salt: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the prefix cache will be salted with the provided "
|
|
"string to prevent an attacker to guess prompts in multi-user "
|
|
"environments. The salt should be random, protected from "
|
|
"access by 3rd parties, and long enough to be "
|
|
"unpredictable (e.g., 43 characters base64-encoded, corresponding "
|
|
"to 256 bit). Not supported by vLLM engine V0."))
|
|
kv_transfer_params: Optional[dict[str, Any]] = Field(
|
|
default=None,
|
|
description="KVTransfer parameters used for disaggregated serving.")
|
|
|
|
# --8<-- [end:chat-completion-extra-params]
|
|
|
|
# Default sampling parameters for chat completion requests
|
|
_DEFAULT_SAMPLING_PARAMS: dict = {
|
|
"repetition_penalty": 1.0,
|
|
"temperature": 1.0,
|
|
"top_p": 1.0,
|
|
"top_k": 0,
|
|
"min_p": 0.0,
|
|
}
|
|
|
|
def to_beam_search_params(
|
|
self,
|
|
default_max_tokens: int,
|
|
default_sampling_params: Optional[dict] = None
|
|
) -> BeamSearchParams:
|
|
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
|
|
max_tokens = self.max_completion_tokens or self.max_tokens
|
|
|
|
if default_sampling_params is None:
|
|
default_sampling_params = {}
|
|
n = self.n if self.n is not None else 1
|
|
|
|
# Use minimum of context window, user request & server limit.
|
|
max_tokens = min(
|
|
val for val in (default_max_tokens, max_tokens,
|
|
default_sampling_params.get("max_tokens", None))
|
|
if val is not None)
|
|
|
|
if (temperature := self.temperature) is None:
|
|
temperature = default_sampling_params.get(
|
|
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
|
|
|
|
return BeamSearchParams(
|
|
beam_width=n,
|
|
max_tokens=max_tokens,
|
|
ignore_eos=self.ignore_eos,
|
|
temperature=temperature,
|
|
length_penalty=self.length_penalty,
|
|
include_stop_str_in_output=self.include_stop_str_in_output,
|
|
)
|
|
|
|
def to_sampling_params(
|
|
self,
|
|
default_max_tokens: int,
|
|
logits_processor_pattern: Optional[str],
|
|
default_sampling_params: Optional[dict] = None,
|
|
) -> SamplingParams:
|
|
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
|
|
max_tokens = self.max_completion_tokens or self.max_tokens
|
|
|
|
if default_sampling_params is None:
|
|
default_sampling_params = {}
|
|
|
|
# Use minimum of context window, user request & server limit.
|
|
max_tokens = min(
|
|
val for val in (default_max_tokens, max_tokens,
|
|
default_sampling_params.get("max_tokens", None))
|
|
if val is not None)
|
|
|
|
# Default parameters
|
|
if (repetition_penalty := self.repetition_penalty) is None:
|
|
repetition_penalty = default_sampling_params.get(
|
|
"repetition_penalty",
|
|
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
|
|
)
|
|
if (temperature := self.temperature) is None:
|
|
temperature = default_sampling_params.get(
|
|
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
|
|
if (top_p := self.top_p) is None:
|
|
top_p = default_sampling_params.get(
|
|
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"])
|
|
if (top_k := self.top_k) is None:
|
|
top_k = default_sampling_params.get(
|
|
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"])
|
|
if (min_p := self.min_p) is None:
|
|
min_p = default_sampling_params.get(
|
|
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"])
|
|
|
|
prompt_logprobs = self.prompt_logprobs
|
|
if prompt_logprobs is None and self.echo:
|
|
prompt_logprobs = self.top_logprobs
|
|
|
|
guided_json_object = None
|
|
if self.response_format is not None:
|
|
if self.response_format.type == "json_object":
|
|
guided_json_object = True
|
|
elif self.response_format.type == "json_schema":
|
|
json_schema = self.response_format.json_schema
|
|
assert json_schema is not None
|
|
self.guided_json = json_schema.json_schema
|
|
elif self.response_format.type == "structural_tag":
|
|
structural_tag = self.response_format
|
|
assert structural_tag is not None and isinstance(
|
|
structural_tag, StructuralTagResponseFormat)
|
|
s_tag_obj = structural_tag.model_dump(by_alias=True)
|
|
self.structural_tag = json.dumps(s_tag_obj)
|
|
|
|
guided_decoding = GuidedDecodingParams.from_optional(
|
|
json=self._get_guided_json_from_tool() or self.guided_json,
|
|
regex=self.guided_regex,
|
|
choice=self.guided_choice,
|
|
grammar=self.guided_grammar,
|
|
json_object=guided_json_object,
|
|
backend=self.guided_decoding_backend,
|
|
whitespace_pattern=self.guided_whitespace_pattern,
|
|
structural_tag=self.structural_tag,
|
|
)
|
|
|
|
return SamplingParams.from_optional(
|
|
n=self.n,
|
|
best_of=self.best_of,
|
|
presence_penalty=self.presence_penalty,
|
|
frequency_penalty=self.frequency_penalty,
|
|
repetition_penalty=repetition_penalty,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
min_p=min_p,
|
|
seed=self.seed,
|
|
stop=self.stop,
|
|
stop_token_ids=self.stop_token_ids,
|
|
logprobs=self.top_logprobs if self.logprobs else None,
|
|
prompt_logprobs=prompt_logprobs,
|
|
ignore_eos=self.ignore_eos,
|
|
max_tokens=max_tokens,
|
|
min_tokens=self.min_tokens,
|
|
skip_special_tokens=self.skip_special_tokens,
|
|
spaces_between_special_tokens=self.spaces_between_special_tokens,
|
|
logits_processors=get_logits_processors(self.logits_processors,
|
|
logits_processor_pattern),
|
|
include_stop_str_in_output=self.include_stop_str_in_output,
|
|
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
|
output_kind=RequestOutputKind.DELTA if self.stream \
|
|
else RequestOutputKind.FINAL_ONLY,
|
|
guided_decoding=guided_decoding,
|
|
logit_bias=self.logit_bias,
|
|
extra_args=({"kv_transfer_params": self.kv_transfer_params}
|
|
if self.kv_transfer_params else None))
|
|
|
|
def _get_guided_json_from_tool(
|
|
self) -> Optional[Union[str, dict, BaseModel]]:
|
|
# user has chosen to not use any tool
|
|
if self.tool_choice == "none" or self.tools is None:
|
|
return None
|
|
|
|
# user has chosen to use a named tool
|
|
if type(self.tool_choice) is ChatCompletionNamedToolChoiceParam:
|
|
tool_name = self.tool_choice.function.name
|
|
tools = {tool.function.name: tool.function for tool in self.tools}
|
|
if tool_name not in tools:
|
|
raise ValueError(
|
|
f"Tool '{tool_name}' has not been passed in `tools`.")
|
|
tool = tools[tool_name]
|
|
return tool.parameters
|
|
|
|
if self.tool_choice == "required":
|
|
# Pydantic schema generation cannot be used since the JSON schema
|
|
# has to be constructed for a specific instantiation of a tool list
|
|
# so that parameters of a function are correctly generated
|
|
# based on the chosen function name
|
|
def get_tool_schema(tool: ChatCompletionToolsParam) -> dict:
|
|
return {
|
|
"properties": {
|
|
"name": {
|
|
"type": "string",
|
|
"enum": [tool.function.name]
|
|
},
|
|
# parameters are always generated as '{}' in the final
|
|
# output if they are missing from the request
|
|
# (i.e. are None or '{}') so the schema is
|
|
# updated to produce an empty object in that case
|
|
"parameters": tool.function.parameters
|
|
if tool.function.parameters else {
|
|
"type": "object",
|
|
"properties": {}
|
|
}
|
|
},
|
|
"required": ["name", "parameters"]
|
|
}
|
|
|
|
json_schema = {
|
|
"type": "array",
|
|
"minItems": 1,
|
|
"items": {
|
|
"type": "object",
|
|
"anyOf": [get_tool_schema(tool) for tool in self.tools]
|
|
}
|
|
}
|
|
return json_schema
|
|
|
|
return None
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_stream_options(cls, data):
|
|
if data.get("stream_options") and not data.get("stream"):
|
|
raise ValueError(
|
|
"Stream options can only be defined when `stream=True`.")
|
|
|
|
return data
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_logprobs(cls, data):
|
|
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
|
|
if data.get("stream") and prompt_logprobs > 0:
|
|
raise ValueError(
|
|
"`prompt_logprobs` are not available when `stream=True`.")
|
|
|
|
if prompt_logprobs < 0:
|
|
raise ValueError("`prompt_logprobs` must be a positive value.")
|
|
|
|
if (top_logprobs := data.get("top_logprobs")) is not None:
|
|
if top_logprobs < 0:
|
|
raise ValueError("`top_logprobs` must be a positive value.")
|
|
|
|
if top_logprobs > 0 and not data.get("logprobs"):
|
|
raise ValueError(
|
|
"when using `top_logprobs`, `logprobs` must be set to true."
|
|
)
|
|
|
|
return data
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_guided_decoding_count(cls, data):
|
|
if isinstance(data, ValueError):
|
|
raise data
|
|
|
|
guide_count = sum([
|
|
"guided_json" in data and data["guided_json"] is not None,
|
|
"guided_regex" in data and data["guided_regex"] is not None,
|
|
"guided_choice" in data and data["guided_choice"] is not None
|
|
])
|
|
# you can only use one kind of guided decoding
|
|
if guide_count > 1:
|
|
raise ValueError(
|
|
"You can only use one kind of guided decoding "
|
|
"('guided_json', 'guided_regex' or 'guided_choice').")
|
|
# you can only either use guided decoding or tools, not both
|
|
if guide_count > 1 and data.get("tool_choice", "none") not in (
|
|
"none",
|
|
"auto",
|
|
"required",
|
|
):
|
|
raise ValueError(
|
|
"You can only either use guided decoding or tools, not both.")
|
|
return data
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_tool_usage(cls, data):
|
|
|
|
# if "tool_choice" is not specified but tools are provided,
|
|
# default to "auto" tool_choice
|
|
if "tool_choice" not in data and data.get("tools"):
|
|
data["tool_choice"] = "auto"
|
|
|
|
# if "tool_choice" is "none" -- ignore tools if present
|
|
if "tool_choice" in data and data["tool_choice"] == "none":
|
|
# ensure that no tools are present
|
|
data.pop("tools", None)
|
|
return data
|
|
|
|
# if "tool_choice" is specified -- validation
|
|
if "tool_choice" in data:
|
|
|
|
# ensure that if "tool choice" is specified, tools are present
|
|
if "tools" not in data or data["tools"] is None:
|
|
raise ValueError(
|
|
"When using `tool_choice`, `tools` must be set.")
|
|
|
|
# make sure that tool choice is either a named tool
|
|
# OR that it's set to "auto" or "required"
|
|
if data["tool_choice"] not in [
|
|
"auto", "required"
|
|
] and not isinstance(data["tool_choice"], dict):
|
|
raise NotImplementedError(
|
|
f'Invalid value for `tool_choice`: {data["tool_choice"]}! '\
|
|
'Only named tools, "none", "auto" or "required" '\
|
|
'are supported.'
|
|
)
|
|
|
|
# ensure that if "tool_choice" is specified as an object,
|
|
# it matches a valid tool
|
|
if isinstance(data["tool_choice"], dict):
|
|
valid_tool = False
|
|
specified_function = data["tool_choice"].get("function")
|
|
if not specified_function:
|
|
raise ValueError(
|
|
"Expected field `function` in `tool_choice`."
|
|
" Correct usage: `{\"type\": \"function\","
|
|
" \"function\": {\"name\": \"my_function\"}}`")
|
|
specified_function_name = specified_function.get("name")
|
|
if not specified_function_name:
|
|
raise ValueError(
|
|
"Expected field `name` in `function` in `tool_choice`."
|
|
"Correct usage: `{\"type\": \"function\", "
|
|
"\"function\": {\"name\": \"my_function\"}}`")
|
|
for tool in data["tools"]:
|
|
if tool["function"]["name"] == specified_function_name:
|
|
valid_tool = True
|
|
break
|
|
if not valid_tool:
|
|
raise ValueError(
|
|
"The tool specified in `tool_choice` does not match any"
|
|
" of the specified `tools`")
|
|
return data
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_generation_prompt(cls, data):
|
|
if data.get("continue_final_message") and data.get(
|
|
"add_generation_prompt"):
|
|
raise ValueError("Cannot set both `continue_final_message` and "
|
|
"`add_generation_prompt` to True.")
|
|
return data
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_cache_salt_support(cls, data):
|
|
if data.get("cache_salt") is not None:
|
|
if not envs.VLLM_USE_V1:
|
|
raise ValueError(
|
|
"Parameter 'cache_salt' is not supported with "
|
|
"this instance of vLLM, which uses engine V0.")
|
|
if not isinstance(data["cache_salt"],
|
|
str) or not data["cache_salt"]:
|
|
raise ValueError("Parameter 'cache_salt' must be a "
|
|
"non-empty string if provided.")
|
|
return data
|
|
|
|
|
|
class CompletionRequest(OpenAIBaseModel):
|
|
# Ordered by official OpenAI API documentation
|
|
# https://platform.openai.com/docs/api-reference/completions/create
|
|
model: Optional[str] = None
|
|
prompt: Optional[Union[list[int], list[list[int]], str, list[str]]] = None
|
|
prompt_embeds: Optional[Union[bytes, list[bytes]]] = None
|
|
best_of: Optional[int] = None
|
|
echo: Optional[bool] = False
|
|
frequency_penalty: Optional[float] = 0.0
|
|
logit_bias: Optional[dict[str, float]] = None
|
|
logprobs: Optional[int] = None
|
|
max_tokens: Optional[int] = 16
|
|
n: int = 1
|
|
presence_penalty: Optional[float] = 0.0
|
|
seed: Optional[int] = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
|
|
stop: Optional[Union[str, list[str]]] = []
|
|
stream: Optional[bool] = False
|
|
stream_options: Optional[StreamOptions] = None
|
|
suffix: Optional[str] = None
|
|
temperature: Optional[float] = None
|
|
top_p: Optional[float] = None
|
|
user: Optional[str] = None
|
|
|
|
# --8<-- [start:completion-sampling-params]
|
|
use_beam_search: bool = False
|
|
top_k: Optional[int] = None
|
|
min_p: Optional[float] = None
|
|
repetition_penalty: Optional[float] = None
|
|
length_penalty: float = 1.0
|
|
stop_token_ids: Optional[list[int]] = []
|
|
include_stop_str_in_output: bool = False
|
|
ignore_eos: bool = False
|
|
min_tokens: int = 0
|
|
skip_special_tokens: bool = True
|
|
spaces_between_special_tokens: bool = True
|
|
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None
|
|
allowed_token_ids: Optional[list[int]] = None
|
|
prompt_logprobs: Optional[int] = None
|
|
# --8<-- [end:completion-sampling-params]
|
|
|
|
# --8<-- [start:completion-extra-params]
|
|
add_special_tokens: bool = Field(
|
|
default=True,
|
|
description=(
|
|
"If true (the default), special tokens (e.g. BOS) will be added to "
|
|
"the prompt."),
|
|
)
|
|
response_format: Optional[AnyResponseFormat] = Field(
|
|
default=None,
|
|
description=(
|
|
"Similar to chat completion, this parameter specifies the format "
|
|
"of output. Only {'type': 'json_object'}, {'type': 'json_schema'}"
|
|
", {'type': 'structural_tag'}, or {'type': 'text' } is supported."
|
|
),
|
|
)
|
|
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
|
|
default=None,
|
|
description="If specified, the output will follow the JSON schema.",
|
|
)
|
|
guided_regex: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will follow the regex pattern."),
|
|
)
|
|
guided_choice: Optional[list[str]] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will be exactly one of the choices."),
|
|
)
|
|
guided_grammar: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, the output will follow the context free grammar."),
|
|
)
|
|
guided_decoding_backend: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, will override the default guided decoding backend "
|
|
"of the server for this specific request. If set, must be one of "
|
|
"'outlines' / 'lm-format-enforcer'"),
|
|
)
|
|
guided_whitespace_pattern: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified, will override the default whitespace pattern "
|
|
"for guided json decoding."),
|
|
)
|
|
priority: int = Field(
|
|
default=0,
|
|
description=(
|
|
"The priority of the request (lower means earlier handling; "
|
|
"default: 0). Any priority other than 0 will raise an error "
|
|
"if the served model does not use priority scheduling."),
|
|
)
|
|
logits_processors: Optional[LogitsProcessors] = Field(
|
|
default=None,
|
|
description=(
|
|
"A list of either qualified names of logits processors, or "
|
|
"constructor objects, to apply when sampling. A constructor is "
|
|
"a JSON object with a required 'qualname' field specifying the "
|
|
"qualified name of the processor class/factory, and optional "
|
|
"'args' and 'kwargs' fields containing positional and keyword "
|
|
"arguments. For example: {'qualname': "
|
|
"'my_module.MyLogitsProcessor', 'args': [1, 2], 'kwargs': "
|
|
"{'param': 'value'}}."))
|
|
|
|
return_tokens_as_token_ids: Optional[bool] = Field(
|
|
default=None,
|
|
description=(
|
|
"If specified with 'logprobs', tokens are represented "
|
|
" as strings of the form 'token_id:{token_id}' so that tokens "
|
|
"that are not JSON-encodable can be identified."))
|
|
|
|
kv_transfer_params: Optional[dict[str, Any]] = Field(
|
|
default=None,
|
|
description="KVTransfer parameters used for disaggregated serving.")
|
|
|
|
# --8<-- [end:completion-extra-params]
|
|
|
|
# Default sampling parameters for completion requests
|
|
_DEFAULT_SAMPLING_PARAMS: dict = {
|
|
"repetition_penalty": 1.0,
|
|
"temperature": 1.0,
|
|
"top_p": 1.0,
|
|
"top_k": 0,
|
|
"min_p": 0.0,
|
|
}
|
|
|
|
def to_beam_search_params(
|
|
self,
|
|
default_max_tokens: int,
|
|
default_sampling_params: Optional[dict] = None
|
|
) -> BeamSearchParams:
|
|
max_tokens = self.max_tokens
|
|
|
|
if default_sampling_params is None:
|
|
default_sampling_params = {}
|
|
n = self.n if self.n is not None else 1
|
|
|
|
# Use minimum of context window, user request & server limit.
|
|
max_tokens = min(
|
|
val for val in (default_max_tokens, max_tokens,
|
|
default_sampling_params.get("max_tokens", None))
|
|
if val is not None)
|
|
|
|
if (temperature := self.temperature) is None:
|
|
temperature = default_sampling_params.get("temperature", 1.0)
|
|
|
|
return BeamSearchParams(
|
|
beam_width=n,
|
|
max_tokens=max_tokens,
|
|
ignore_eos=self.ignore_eos,
|
|
temperature=temperature,
|
|
length_penalty=self.length_penalty,
|
|
include_stop_str_in_output=self.include_stop_str_in_output,
|
|
)
|
|
|
|
def to_sampling_params(
|
|
self,
|
|
default_max_tokens: int,
|
|
logits_processor_pattern: Optional[str],
|
|
default_sampling_params: Optional[dict] = None,
|
|
) -> SamplingParams:
|
|
max_tokens = self.max_tokens
|
|
|
|
if default_sampling_params is None:
|
|
default_sampling_params = {}
|
|
|
|
# Use minimum of context window, user request & server limit.
|
|
max_tokens = min(
|
|
val for val in (default_max_tokens, max_tokens,
|
|
default_sampling_params.get("max_tokens", None))
|
|
if val is not None)
|
|
|
|
# Default parameters
|
|
if (repetition_penalty := self.repetition_penalty) is None:
|
|
repetition_penalty = default_sampling_params.get(
|
|
"repetition_penalty",
|
|
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"],
|
|
)
|
|
if (temperature := self.temperature) is None:
|
|
temperature = default_sampling_params.get(
|
|
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
|
|
if (top_p := self.top_p) is None:
|
|
top_p = default_sampling_params.get(
|
|
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"])
|
|
if (top_k := self.top_k) is None:
|
|
top_k = default_sampling_params.get(
|
|
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"])
|
|
if (min_p := self.min_p) is None:
|
|
min_p = default_sampling_params.get(
|
|
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"])
|
|
|
|
prompt_logprobs = self.prompt_logprobs
|
|
if prompt_logprobs is None and self.echo:
|
|
prompt_logprobs = self.logprobs
|
|
|
|
echo_without_generation = self.echo and self.max_tokens == 0
|
|
|
|
guided_json_object = None
|
|
if (self.response_format is not None
|
|
and self.response_format.type == "json_object"):
|
|
guided_json_object = True
|
|
|
|
guided_decoding = GuidedDecodingParams.from_optional(
|
|
json=self.guided_json,
|
|
regex=self.guided_regex,
|
|
choice=self.guided_choice,
|
|
grammar=self.guided_grammar,
|
|
json_object=guided_json_object,
|
|
backend=self.guided_decoding_backend,
|
|
whitespace_pattern=self.guided_whitespace_pattern,
|
|
)
|
|
|
|
return SamplingParams.from_optional(
|
|
n=self.n,
|
|
best_of=self.best_of,
|
|
presence_penalty=self.presence_penalty,
|
|
frequency_penalty=self.frequency_penalty,
|
|
repetition_penalty=repetition_penalty,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
min_p=min_p,
|
|
seed=self.seed,
|
|
stop=self.stop,
|
|
stop_token_ids=self.stop_token_ids,
|
|
logprobs=self.logprobs,
|
|
ignore_eos=self.ignore_eos,
|
|
max_tokens=max_tokens if not echo_without_generation else 1,
|
|
min_tokens=self.min_tokens,
|
|
prompt_logprobs=prompt_logprobs,
|
|
skip_special_tokens=self.skip_special_tokens,
|
|
spaces_between_special_tokens=self.spaces_between_special_tokens,
|
|
include_stop_str_in_output=self.include_stop_str_in_output,
|
|
logits_processors=get_logits_processors(self.logits_processors,
|
|
logits_processor_pattern),
|
|
truncate_prompt_tokens=self.truncate_prompt_tokens,
|
|
output_kind=RequestOutputKind.DELTA if self.stream \
|
|
else RequestOutputKind.FINAL_ONLY,
|
|
guided_decoding=guided_decoding,
|
|
logit_bias=self.logit_bias,
|
|
allowed_token_ids=self.allowed_token_ids,
|
|
extra_args=({"kv_transfer_params": self.kv_transfer_params}
|
|
if self.kv_transfer_params else None))
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_guided_decoding_count(cls, data):
|
|
guide_count = sum([
|
|
"guided_json" in data and data["guided_json"] is not None,
|
|
"guided_regex" in data and data["guided_regex"] is not None,
|
|
"guided_choice" in data and data["guided_choice"] is not None
|
|
])
|
|
if guide_count > 1:
|
|
raise ValueError(
|
|
"You can only use one kind of guided decoding "
|
|
"('guided_json', 'guided_regex' or 'guided_choice').")
|
|
return data
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_logprobs(cls, data):
|
|
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
|
|
if data.get("stream") and prompt_logprobs > 0:
|
|
raise ValueError(
|
|
"`prompt_logprobs` are not available when `stream=True`.")
|
|
|
|
if prompt_logprobs < 0:
|
|
raise ValueError("`prompt_logprobs` must be a positive value.")
|
|
|
|
if (logprobs := data.get("logprobs")) is not None and logprobs < 0:
|
|
raise ValueError("`logprobs` must be a positive value.")
|
|
|
|
return data
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_stream_options(cls, data):
|
|
if data.get("stream_options") and not data.get("stream"):
|
|
raise ValueError(
|
|
"Stream options can only be defined when `stream=True`.")
|
|
|
|
return data
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_prompt_and_prompt_embeds(cls, data):
|
|
if data.get("prompt") is None and data.get("prompt_embeds") is None:
|
|
raise ValueError(
|
|
"At least one of `prompt` or `prompt_embeds` must be set.")
|
|
return data
|
|
|
|
|
|
class EmbeddingCompletionRequest(OpenAIBaseModel):
|
|
# Ordered by official OpenAI API documentation
|
|
# https://platform.openai.com/docs/api-reference/embeddings
|
|
model: Optional[str] = None
|
|
input: Union[list[int], list[list[int]], str, list[str]]
|
|
encoding_format: Literal["float", "base64"] = "float"
|
|
dimensions: Optional[int] = None
|
|
user: Optional[str] = None
|
|
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
|
|
|
|
# --8<-- [start:embedding-pooling-params]
|
|
additional_data: Optional[Any] = None
|
|
# --8<-- [end:embedding-pooling-params]
|
|
|
|
# --8<-- [start:embedding-extra-params]
|
|
add_special_tokens: bool = Field(
|
|
default=True,
|
|
description=(
|
|
"If true (the default), special tokens (e.g. BOS) will be added to "
|
|
"the prompt."),
|
|
)
|
|
priority: int = Field(
|
|
default=0,
|
|
description=(
|
|
"The priority of the request (lower means earlier handling; "
|
|
"default: 0). Any priority other than 0 will raise an error "
|
|
"if the served model does not use priority scheduling."),
|
|
)
|
|
|
|
# --8<-- [end:embedding-extra-params]
|
|
|
|
def to_pooling_params(self):
|
|
return PoolingParams(dimensions=self.dimensions,
|
|
additional_data=self.additional_data)
|
|
|
|
|
|
class EmbeddingChatRequest(OpenAIBaseModel):
|
|
model: Optional[str] = None
|
|
messages: list[ChatCompletionMessageParam]
|
|
|
|
encoding_format: Literal["float", "base64"] = "float"
|
|
dimensions: Optional[int] = None
|
|
user: Optional[str] = None
|
|
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
|
|
|
|
# --8<-- [start:chat-embedding-pooling-params]
|
|
additional_data: Optional[Any] = None
|
|
# --8<-- [end:chat-embedding-pooling-params]
|
|
|
|
# --8<-- [start:chat-embedding-extra-params]
|
|
add_special_tokens: bool = Field(
|
|
default=False,
|
|
description=(
|
|
"If true, special tokens (e.g. BOS) will be added to the prompt "
|
|
"on top of what is added by the chat template. "
|
|
"For most models, the chat template takes care of adding the "
|
|
"special tokens so this should be set to false (as is the "
|
|
"default)."),
|
|
)
|
|
chat_template: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"A Jinja template to use for this conversion. "
|
|
"As of transformers v4.44, default chat template is no longer "
|
|
"allowed, so you must provide a chat template if the tokenizer "
|
|
"does not define one."),
|
|
)
|
|
chat_template_kwargs: Optional[dict[str, Any]] = Field(
|
|
default=None,
|
|
description=("Additional kwargs to pass to the template renderer. "
|
|
"Will be accessible by the chat template."),
|
|
)
|
|
mm_processor_kwargs: Optional[dict[str, Any]] = Field(
|
|
default=None,
|
|
description=("Additional kwargs to pass to the HF processor."),
|
|
)
|
|
priority: int = Field(
|
|
default=0,
|
|
description=(
|
|
"The priority of the request (lower means earlier handling; "
|
|
"default: 0). Any priority other than 0 will raise an error "
|
|
"if the served model does not use priority scheduling."),
|
|
)
|
|
# --8<-- [end:chat-embedding-extra-params]
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_generation_prompt(cls, data):
|
|
if data.get("continue_final_message") and data.get(
|
|
"add_generation_prompt"):
|
|
raise ValueError("Cannot set both `continue_final_message` and "
|
|
"`add_generation_prompt` to True.")
|
|
return data
|
|
|
|
def to_pooling_params(self):
|
|
return PoolingParams(dimensions=self.dimensions,
|
|
additional_data=self.additional_data)
|
|
|
|
|
|
EmbeddingRequest = Union[EmbeddingCompletionRequest, EmbeddingChatRequest]
|
|
|
|
PoolingCompletionRequest = EmbeddingCompletionRequest
|
|
PoolingChatRequest = EmbeddingChatRequest
|
|
PoolingRequest = Union[PoolingCompletionRequest, PoolingChatRequest]
|
|
|
|
|
|
class ScoreRequest(OpenAIBaseModel):
|
|
model: Optional[str] = None
|
|
text_1: Union[list[str], str]
|
|
text_2: Union[list[str], str]
|
|
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
|
|
|
|
# --8<-- [start:score-pooling-params]
|
|
additional_data: Optional[Any] = None
|
|
# --8<-- [end:score-pooling-params]
|
|
|
|
# --8<-- [start:score-extra-params]
|
|
priority: int = Field(
|
|
default=0,
|
|
description=(
|
|
"The priority of the request (lower means earlier handling; "
|
|
"default: 0). Any priority other than 0 will raise an error "
|
|
"if the served model does not use priority scheduling."),
|
|
)
|
|
|
|
# --8<-- [end:score-extra-params]
|
|
|
|
def to_pooling_params(self):
|
|
return PoolingParams(additional_data=self.additional_data)
|
|
|
|
|
|
class RerankRequest(OpenAIBaseModel):
|
|
model: Optional[str] = None
|
|
query: str
|
|
documents: list[str]
|
|
top_n: int = Field(default_factory=lambda: 0)
|
|
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
|
|
|
|
# --8<-- [start:rerank-pooling-params]
|
|
additional_data: Optional[Any] = None
|
|
# --8<-- [end:rerank-pooling-params]
|
|
|
|
# --8<-- [start:rerank-extra-params]
|
|
priority: int = Field(
|
|
default=0,
|
|
description=(
|
|
"The priority of the request (lower means earlier handling; "
|
|
"default: 0). Any priority other than 0 will raise an error "
|
|
"if the served model does not use priority scheduling."),
|
|
)
|
|
|
|
# --8<-- [end:rerank-extra-params]
|
|
|
|
def to_pooling_params(self):
|
|
return PoolingParams(additional_data=self.additional_data)
|
|
|
|
|
|
class RerankDocument(BaseModel):
|
|
text: str
|
|
|
|
|
|
class RerankResult(BaseModel):
|
|
index: int
|
|
document: RerankDocument
|
|
relevance_score: float
|
|
|
|
|
|
class RerankUsage(BaseModel):
|
|
total_tokens: int
|
|
|
|
|
|
class RerankResponse(OpenAIBaseModel):
|
|
id: str
|
|
model: str
|
|
usage: RerankUsage
|
|
results: list[RerankResult]
|
|
|
|
|
|
class CompletionLogProbs(OpenAIBaseModel):
|
|
text_offset: list[int] = Field(default_factory=list)
|
|
token_logprobs: list[Optional[float]] = Field(default_factory=list)
|
|
tokens: list[str] = Field(default_factory=list)
|
|
top_logprobs: list[Optional[dict[str,
|
|
float]]] = Field(default_factory=list)
|
|
|
|
|
|
class CompletionResponseChoice(OpenAIBaseModel):
|
|
index: int
|
|
text: str
|
|
logprobs: Optional[CompletionLogProbs] = None
|
|
finish_reason: Optional[str] = None
|
|
stop_reason: Optional[Union[int, str]] = Field(
|
|
default=None,
|
|
description=(
|
|
"The stop string or token id that caused the completion "
|
|
"to stop, None if the completion finished for some other reason "
|
|
"including encountering the EOS token"),
|
|
)
|
|
prompt_logprobs: Optional[list[Optional[dict[int, Logprob]]]] = None
|
|
|
|
|
|
class CompletionResponse(OpenAIBaseModel):
|
|
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
|
|
object: str = "text_completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: list[CompletionResponseChoice]
|
|
usage: UsageInfo
|
|
kv_transfer_params: Optional[dict[str, Any]] = Field(
|
|
default=None, description="KVTransfer parameters.")
|
|
|
|
|
|
class CompletionResponseStreamChoice(OpenAIBaseModel):
|
|
index: int
|
|
text: str
|
|
logprobs: Optional[CompletionLogProbs] = None
|
|
finish_reason: Optional[str] = None
|
|
stop_reason: Optional[Union[int, str]] = Field(
|
|
default=None,
|
|
description=(
|
|
"The stop string or token id that caused the completion "
|
|
"to stop, None if the completion finished for some other reason "
|
|
"including encountering the EOS token"),
|
|
)
|
|
|
|
|
|
class CompletionStreamResponse(OpenAIBaseModel):
|
|
id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
|
|
object: str = "text_completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: list[CompletionResponseStreamChoice]
|
|
usage: Optional[UsageInfo] = Field(default=None)
|
|
|
|
|
|
class EmbeddingResponseData(OpenAIBaseModel):
|
|
index: int
|
|
object: str = "embedding"
|
|
embedding: Union[list[float], str]
|
|
|
|
|
|
class EmbeddingResponse(OpenAIBaseModel):
|
|
id: str = Field(default_factory=lambda: f"embd-{random_uuid()}")
|
|
object: str = "list"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
data: list[EmbeddingResponseData]
|
|
usage: UsageInfo
|
|
|
|
|
|
class PoolingResponseData(OpenAIBaseModel):
|
|
index: int
|
|
object: str = "pooling"
|
|
data: Union[list[list[float]], list[float], str]
|
|
|
|
|
|
class PoolingResponse(OpenAIBaseModel):
|
|
id: str = Field(default_factory=lambda: f"pool-{random_uuid()}")
|
|
object: str = "list"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
data: list[PoolingResponseData]
|
|
usage: UsageInfo
|
|
|
|
|
|
class ScoreResponseData(OpenAIBaseModel):
|
|
index: int
|
|
object: str = "score"
|
|
score: float
|
|
|
|
|
|
class ScoreResponse(OpenAIBaseModel):
|
|
id: str = Field(default_factory=lambda: f"embd-{random_uuid()}")
|
|
object: str = "list"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
data: list[ScoreResponseData]
|
|
usage: UsageInfo
|
|
|
|
|
|
class ClassificationRequest(OpenAIBaseModel):
|
|
model: Optional[str] = None
|
|
input: Union[list[str], str]
|
|
truncate_prompt_tokens: Optional[int] = None
|
|
user: Optional[str] = None
|
|
|
|
# --8<-- [start:classification-pooling-params]
|
|
additional_data: Optional[Any] = None
|
|
# --8<-- [end:classification-pooling-params]
|
|
|
|
# --8<-- [start:classification-extra-params]
|
|
priority: int = Field(
|
|
default=0,
|
|
description=(
|
|
"The priority of the request (lower means earlier handling; "
|
|
"default: 0). Any priority other than 0 will raise an error "
|
|
"if the served model does not use priority scheduling."),
|
|
)
|
|
|
|
# --8<-- [end:classification-extra-params]
|
|
|
|
def to_pooling_params(self):
|
|
return PoolingParams(additional_data=self.additional_data)
|
|
|
|
|
|
class ClassificationData(OpenAIBaseModel):
|
|
index: int
|
|
label: Optional[str]
|
|
probs: list[float]
|
|
num_classes: int
|
|
|
|
|
|
class ClassificationResponse(OpenAIBaseModel):
|
|
id: str = Field(default_factory=lambda: f"classify-{random_uuid()}")
|
|
object: str = "list"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
data: list[ClassificationData]
|
|
usage: UsageInfo
|
|
|
|
|
|
class FunctionCall(OpenAIBaseModel):
|
|
name: str
|
|
arguments: str
|
|
|
|
|
|
class ToolCall(OpenAIBaseModel):
|
|
id: str = Field(default_factory=random_tool_call_id)
|
|
type: Literal["function"] = "function"
|
|
function: FunctionCall
|
|
|
|
|
|
class DeltaFunctionCall(BaseModel):
|
|
name: Optional[str] = None
|
|
arguments: Optional[str] = None
|
|
|
|
|
|
# a tool call delta where everything is optional
|
|
class DeltaToolCall(OpenAIBaseModel):
|
|
id: Optional[str] = None
|
|
type: Optional[Literal["function"]] = None
|
|
index: int
|
|
function: Optional[DeltaFunctionCall] = None
|
|
|
|
|
|
class ExtractedToolCallInformation(BaseModel):
|
|
# indicate if tools were called
|
|
tools_called: bool
|
|
|
|
# extracted tool calls
|
|
tool_calls: list[ToolCall]
|
|
|
|
# content - per OpenAI spec, content AND tool calls can be returned rarely
|
|
# But some models will do this intentionally
|
|
content: Optional[str] = None
|
|
|
|
|
|
class ChatMessage(OpenAIBaseModel):
|
|
role: str
|
|
reasoning_content: Optional[str] = None
|
|
content: Optional[str] = None
|
|
tool_calls: list[ToolCall] = Field(default_factory=list)
|
|
|
|
|
|
class ChatCompletionLogProb(OpenAIBaseModel):
|
|
token: str
|
|
logprob: float = -9999.0
|
|
bytes: Optional[list[int]] = None
|
|
|
|
|
|
class ChatCompletionLogProbsContent(ChatCompletionLogProb):
|
|
# Workaround: redefine fields name cache so that it's not
|
|
# shared with the super class.
|
|
field_names: ClassVar[Optional[set[str]]] = None
|
|
top_logprobs: list[ChatCompletionLogProb] = Field(default_factory=list)
|
|
|
|
|
|
class ChatCompletionLogProbs(OpenAIBaseModel):
|
|
content: Optional[list[ChatCompletionLogProbsContent]] = None
|
|
|
|
|
|
class ChatCompletionResponseChoice(OpenAIBaseModel):
|
|
index: int
|
|
message: ChatMessage
|
|
logprobs: Optional[ChatCompletionLogProbs] = None
|
|
# per OpenAI spec this is the default
|
|
finish_reason: Optional[str] = "stop"
|
|
# not part of the OpenAI spec but included in vLLM for legacy reasons
|
|
stop_reason: Optional[Union[int, str]] = None
|
|
|
|
|
|
class ChatCompletionResponse(OpenAIBaseModel):
|
|
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
|
|
object: Literal["chat.completion"] = "chat.completion"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: list[ChatCompletionResponseChoice]
|
|
usage: UsageInfo
|
|
prompt_logprobs: Optional[list[Optional[dict[int, Logprob]]]] = None
|
|
kv_transfer_params: Optional[dict[str, Any]] = Field(
|
|
default=None, description="KVTransfer parameters.")
|
|
|
|
|
|
class DeltaMessage(OpenAIBaseModel):
|
|
role: Optional[str] = None
|
|
content: Optional[str] = None
|
|
reasoning_content: Optional[str] = None
|
|
tool_calls: list[DeltaToolCall] = Field(default_factory=list)
|
|
|
|
|
|
class ChatCompletionResponseStreamChoice(OpenAIBaseModel):
|
|
index: int
|
|
delta: DeltaMessage
|
|
logprobs: Optional[ChatCompletionLogProbs] = None
|
|
finish_reason: Optional[str] = None
|
|
stop_reason: Optional[Union[int, str]] = None
|
|
|
|
|
|
class ChatCompletionStreamResponse(OpenAIBaseModel):
|
|
id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
|
|
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: list[ChatCompletionResponseStreamChoice]
|
|
usage: Optional[UsageInfo] = Field(default=None)
|
|
|
|
|
|
class TranscriptionResponseStreamChoice(OpenAIBaseModel):
|
|
delta: DeltaMessage
|
|
finish_reason: Optional[str] = None
|
|
stop_reason: Optional[Union[int, str]] = None
|
|
|
|
|
|
class TranscriptionStreamResponse(OpenAIBaseModel):
|
|
id: str = Field(default_factory=lambda: f"trsc-{random_uuid()}")
|
|
object: Literal["transcription.chunk"] = "transcription.chunk"
|
|
created: int = Field(default_factory=lambda: int(time.time()))
|
|
model: str
|
|
choices: list[TranscriptionResponseStreamChoice]
|
|
usage: Optional[UsageInfo] = Field(default=None)
|
|
|
|
|
|
class BatchRequestInput(OpenAIBaseModel):
|
|
"""
|
|
The per-line object of the batch input file.
|
|
|
|
NOTE: Currently only the `/v1/chat/completions` endpoint is supported.
|
|
"""
|
|
|
|
# A developer-provided per-request id that will be used to match outputs to
|
|
# inputs. Must be unique for each request in a batch.
|
|
custom_id: str
|
|
|
|
# The HTTP method to be used for the request. Currently only POST is
|
|
# supported.
|
|
method: str
|
|
|
|
# The OpenAI API relative URL to be used for the request. Currently
|
|
# /v1/chat/completions is supported.
|
|
url: str
|
|
|
|
# The parameters of the request.
|
|
body: Union[ChatCompletionRequest, EmbeddingRequest, ScoreRequest]
|
|
|
|
@field_validator('body', mode='plain')
|
|
@classmethod
|
|
def check_type_for_url(cls, value: Any, info: ValidationInfo):
|
|
# Use url to disambiguate models
|
|
url = info.data['url']
|
|
if url == "/v1/chat/completions":
|
|
return ChatCompletionRequest.model_validate(value)
|
|
if url == "/v1/embeddings":
|
|
return TypeAdapter(EmbeddingRequest).validate_python(value)
|
|
if url == "/v1/score":
|
|
return ScoreRequest.model_validate(value)
|
|
return TypeAdapter(Union[ChatCompletionRequest, EmbeddingRequest,
|
|
ScoreRequest]).validate_python(value)
|
|
|
|
|
|
class BatchResponseData(OpenAIBaseModel):
|
|
# HTTP status code of the response.
|
|
status_code: int = 200
|
|
|
|
# An unique identifier for the API request.
|
|
request_id: str
|
|
|
|
# The body of the response.
|
|
body: Optional[Union[ChatCompletionResponse, EmbeddingResponse,
|
|
ScoreResponse]] = None
|
|
|
|
|
|
class BatchRequestOutput(OpenAIBaseModel):
|
|
"""
|
|
The per-line object of the batch output and error files
|
|
"""
|
|
|
|
id: str
|
|
|
|
# A developer-provided per-request id that will be used to match outputs to
|
|
# inputs.
|
|
custom_id: str
|
|
|
|
response: Optional[BatchResponseData]
|
|
|
|
# For requests that failed with a non-HTTP error, this will contain more
|
|
# information on the cause of the failure.
|
|
error: Optional[Any]
|
|
|
|
|
|
class TokenizeCompletionRequest(OpenAIBaseModel):
|
|
model: Optional[str] = None
|
|
prompt: str
|
|
|
|
add_special_tokens: bool = Field(
|
|
default=True,
|
|
description=(
|
|
"If true (the default), special tokens (e.g. BOS) will be added to "
|
|
"the prompt."),
|
|
)
|
|
|
|
|
|
class TokenizeChatRequest(OpenAIBaseModel):
|
|
model: Optional[str] = None
|
|
messages: list[ChatCompletionMessageParam]
|
|
|
|
add_generation_prompt: bool = Field(
|
|
default=True,
|
|
description=
|
|
("If true, the generation prompt will be added to the chat template. "
|
|
"This is a parameter used by chat template in tokenizer config of the "
|
|
"model."),
|
|
)
|
|
continue_final_message: bool = Field(
|
|
default=False,
|
|
description=
|
|
("If this is set, the chat will be formatted so that the final "
|
|
"message in the chat is open-ended, without any EOS tokens. The "
|
|
"model will continue this message rather than starting a new one. "
|
|
"This allows you to \"prefill\" part of the model's response for it. "
|
|
"Cannot be used at the same time as `add_generation_prompt`."),
|
|
)
|
|
add_special_tokens: bool = Field(
|
|
default=False,
|
|
description=(
|
|
"If true, special tokens (e.g. BOS) will be added to the prompt "
|
|
"on top of what is added by the chat template. "
|
|
"For most models, the chat template takes care of adding the "
|
|
"special tokens so this should be set to false (as is the "
|
|
"default)."),
|
|
)
|
|
chat_template: Optional[str] = Field(
|
|
default=None,
|
|
description=(
|
|
"A Jinja template to use for this conversion. "
|
|
"As of transformers v4.44, default chat template is no longer "
|
|
"allowed, so you must provide a chat template if the tokenizer "
|
|
"does not define one."),
|
|
)
|
|
chat_template_kwargs: Optional[dict[str, Any]] = Field(
|
|
default=None,
|
|
description=("Additional kwargs to pass to the template renderer. "
|
|
"Will be accessible by the chat template."),
|
|
)
|
|
mm_processor_kwargs: Optional[dict[str, Any]] = Field(
|
|
default=None,
|
|
description=("Additional kwargs to pass to the HF processor."),
|
|
)
|
|
tools: Optional[list[ChatCompletionToolsParam]] = Field(
|
|
default=None,
|
|
description=("A list of tools the model may call."),
|
|
)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def check_generation_prompt(cls, data):
|
|
if data.get("continue_final_message") and data.get(
|
|
"add_generation_prompt"):
|
|
raise ValueError("Cannot set both `continue_final_message` and "
|
|
"`add_generation_prompt` to True.")
|
|
return data
|
|
|
|
|
|
TokenizeRequest = Union[TokenizeCompletionRequest, TokenizeChatRequest]
|
|
|
|
|
|
class TokenizeResponse(OpenAIBaseModel):
|
|
count: int
|
|
max_model_len: int
|
|
tokens: list[int]
|
|
|
|
|
|
class DetokenizeRequest(OpenAIBaseModel):
|
|
model: Optional[str] = None
|
|
tokens: list[int]
|
|
|
|
|
|
class DetokenizeResponse(OpenAIBaseModel):
|
|
prompt: str
|
|
|
|
|
|
class LoadLoRAAdapterRequest(BaseModel):
|
|
lora_name: str
|
|
lora_path: str
|
|
|
|
|
|
class UnloadLoRAAdapterRequest(BaseModel):
|
|
lora_name: str
|
|
lora_int_id: Optional[int] = Field(default=None)
|
|
|
|
|
|
## Protocols for Audio
|
|
AudioResponseFormat: TypeAlias = Literal["json", "text", "srt", "verbose_json",
|
|
"vtt"]
|
|
|
|
|
|
class TranscriptionRequest(OpenAIBaseModel):
|
|
# Ordered by official OpenAI API documentation
|
|
# https://platform.openai.com/docs/api-reference/audio/createTranscription
|
|
|
|
file: UploadFile
|
|
"""
|
|
The audio file object (not file name) to transcribe, in one of these
|
|
formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
|
|
"""
|
|
|
|
model: Optional[str] = None
|
|
"""ID of the model to use.
|
|
"""
|
|
|
|
language: Optional[str] = None
|
|
"""The language of the input audio.
|
|
|
|
Supplying the input language in
|
|
[ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format
|
|
will improve accuracy and latency.
|
|
"""
|
|
|
|
prompt: str = Field(default="")
|
|
"""An optional text to guide the model's style or continue a previous audio
|
|
segment.
|
|
|
|
The [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting)
|
|
should match the audio language.
|
|
"""
|
|
|
|
response_format: AudioResponseFormat = Field(default="json")
|
|
"""
|
|
The format of the output, in one of these options: `json`, `text`, `srt`,
|
|
`verbose_json`, or `vtt`.
|
|
"""
|
|
|
|
## TODO (varun) : Support if set to 0, certain thresholds are met !!
|
|
|
|
timestamp_granularities: list[Literal["word", "segment"]] = Field(
|
|
alias="timestamp_granularities[]", default=[])
|
|
"""The timestamp granularities to populate for this transcription.
|
|
|
|
`response_format` must be set `verbose_json` to use timestamp granularities.
|
|
Either or both of these options are supported: `word`, or `segment`. Note:
|
|
There is no additional latency for segment timestamps, but generating word
|
|
timestamps incurs additional latency.
|
|
"""
|
|
|
|
# --8<-- [start:transcription-extra-params]
|
|
stream: Optional[bool] = False
|
|
"""Custom field not present in the original OpenAI definition. When set,
|
|
it will enable output to be streamed in a similar fashion as the Chat
|
|
Completion endpoint.
|
|
"""
|
|
# Flattened stream option to simplify form data.
|
|
stream_include_usage: Optional[bool] = False
|
|
stream_continuous_usage_stats: Optional[bool] = False
|
|
# --8<-- [end:transcription-extra-params]
|
|
|
|
# --8<-- [start:transcription-sampling-params]
|
|
temperature: float = Field(default=0.0)
|
|
"""The sampling temperature, between 0 and 1.
|
|
|
|
Higher values like 0.8 will make the output more random, while lower values
|
|
like 0.2 will make it more focused / deterministic. If set to 0, the model
|
|
will use [log probability](https://en.wikipedia.org/wiki/Log_probability)
|
|
to automatically increase the temperature until certain thresholds are hit.
|
|
"""
|
|
|
|
top_p: Optional[float] = None
|
|
"""Enables nucleus (top-p) sampling, where tokens are selected from the
|
|
smallest possible set whose cumulative probability exceeds `p`.
|
|
"""
|
|
|
|
top_k: Optional[int] = None
|
|
"""Limits sampling to the `k` most probable tokens at each step."""
|
|
|
|
min_p: Optional[float] = None
|
|
"""Filters out tokens with a probability lower than `min_p`, ensuring a
|
|
minimum likelihood threshold during sampling.
|
|
"""
|
|
|
|
seed: Optional[int] = Field(None, ge=_LONG_INFO.min, le=_LONG_INFO.max)
|
|
"""The seed to use for sampling."""
|
|
|
|
frequency_penalty: Optional[float] = 0.0
|
|
"""The frequency penalty to use for sampling."""
|
|
|
|
repetition_penalty: Optional[float] = None
|
|
"""The repetition penalty to use for sampling."""
|
|
|
|
presence_penalty: Optional[float] = 0.0
|
|
"""The presence penalty to use for sampling."""
|
|
# --8<-- [end:transcription-sampling-params]
|
|
|
|
# Default sampling parameters for transcription requests.
|
|
_DEFAULT_SAMPLING_PARAMS: dict = {
|
|
"repetition_penalty": 1.0,
|
|
"temperature": 1.0,
|
|
"top_p": 1.0,
|
|
"top_k": 0,
|
|
"min_p": 0.0,
|
|
}
|
|
|
|
def to_sampling_params(
|
|
self,
|
|
default_max_tokens: int,
|
|
default_sampling_params: Optional[dict] = None) -> SamplingParams:
|
|
# TODO(#9845): remove max_tokens when field is removed from OpenAI API
|
|
max_tokens = default_max_tokens
|
|
|
|
if default_sampling_params is None:
|
|
default_sampling_params = {}
|
|
|
|
# Default parameters
|
|
if (temperature := self.temperature) is None:
|
|
temperature = default_sampling_params.get(
|
|
"temperature", self._DEFAULT_SAMPLING_PARAMS["temperature"])
|
|
if (top_p := self.top_p) is None:
|
|
top_p = default_sampling_params.get(
|
|
"top_p", self._DEFAULT_SAMPLING_PARAMS["top_p"])
|
|
if (top_k := self.top_k) is None:
|
|
top_k = default_sampling_params.get(
|
|
"top_k", self._DEFAULT_SAMPLING_PARAMS["top_k"])
|
|
if (min_p := self.min_p) is None:
|
|
min_p = default_sampling_params.get(
|
|
"min_p", self._DEFAULT_SAMPLING_PARAMS["min_p"])
|
|
|
|
if (repetition_penalty := self.repetition_penalty) is None:
|
|
repetition_penalty = default_sampling_params.get(
|
|
"repetition_penalty",
|
|
self._DEFAULT_SAMPLING_PARAMS["repetition_penalty"])
|
|
|
|
return SamplingParams.from_optional(temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
seed=self.seed,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
min_p=min_p,
|
|
frequency_penalty=self.frequency_penalty,
|
|
repetition_penalty=repetition_penalty,
|
|
presence_penalty=self.presence_penalty,
|
|
output_kind=RequestOutputKind.DELTA
|
|
if self.stream \
|
|
else RequestOutputKind.FINAL_ONLY)
|
|
|
|
@model_validator(mode="before")
|
|
@classmethod
|
|
def validate_transcription_request(cls, data):
|
|
if isinstance(data.get("file"), str):
|
|
raise HTTPException(
|
|
status_code=HTTPStatus.UNPROCESSABLE_ENTITY,
|
|
detail="Expected 'file' to be a file-like object, not 'str'.",
|
|
)
|
|
|
|
stream_opts = ["stream_include_usage", "stream_continuous_usage_stats"]
|
|
stream = data.get("stream", False)
|
|
if any(bool(data.get(so, False)) for so in stream_opts) and not stream:
|
|
raise ValueError(
|
|
"Stream options can only be defined when `stream=True`.")
|
|
|
|
return data
|
|
|
|
|
|
# Transcription response objects
|
|
class TranscriptionResponse(OpenAIBaseModel):
|
|
text: str
|
|
"""The transcribed text."""
|
|
|
|
|
|
class TranscriptionWord(OpenAIBaseModel):
|
|
end: float
|
|
"""End time of the word in seconds."""
|
|
|
|
start: float
|
|
"""Start time of the word in seconds."""
|
|
|
|
word: str
|
|
"""The text content of the word."""
|
|
|
|
|
|
class TranscriptionSegment(OpenAIBaseModel):
|
|
id: int
|
|
"""Unique identifier of the segment."""
|
|
|
|
avg_logprob: float
|
|
"""Average logprob of the segment.
|
|
|
|
If the value is lower than -1, consider the logprobs failed.
|
|
"""
|
|
|
|
compression_ratio: float
|
|
"""Compression ratio of the segment.
|
|
|
|
If the value is greater than 2.4, consider the compression failed.
|
|
"""
|
|
|
|
end: float
|
|
"""End time of the segment in seconds."""
|
|
|
|
no_speech_prob: float
|
|
"""Probability of no speech in the segment.
|
|
|
|
If the value is higher than 1.0 and the `avg_logprob` is below -1, consider
|
|
this segment silent.
|
|
"""
|
|
|
|
seek: int
|
|
"""Seek offset of the segment."""
|
|
|
|
start: float
|
|
"""Start time of the segment in seconds."""
|
|
|
|
temperature: float
|
|
"""Temperature parameter used for generating the segment."""
|
|
|
|
text: str
|
|
"""Text content of the segment."""
|
|
|
|
tokens: list[int]
|
|
"""Array of token IDs for the text content."""
|
|
|
|
|
|
class TranscriptionResponseVerbose(OpenAIBaseModel):
|
|
duration: str
|
|
"""The duration of the input audio."""
|
|
|
|
language: str
|
|
"""The language of the input audio."""
|
|
|
|
text: str
|
|
"""The transcribed text."""
|
|
|
|
segments: Optional[list[TranscriptionSegment]] = None
|
|
"""Segments of the transcribed text and their corresponding details."""
|
|
|
|
words: Optional[list[TranscriptionWord]] = None
|
|
"""Extracted words and their corresponding timestamps."""
|