Files
vllm-dev/vllm/model_executor/layers/fused_moe/fused_moe.py
Duncan Moss 3d184b95b8 [feat]: CUTLASS block scaled group gemm for SM100 (#19757)
Signed-off-by: Duncan Moss <djm.moss@gmail.com>
Co-authored-by: Duncan Moss <dmoss@nvidia.com>
2025-07-04 12:58:04 -06:00

1735 lines
68 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Fused MoE kernel."""
import functools
import json
import os
from typing import Any, Callable, Optional
import torch
import vllm.envs as envs
import vllm.model_executor.layers.fused_moe.modular_kernel as mk
from vllm import _custom_ops as ops
from vllm.logger import init_logger
# yapf: disable
from vllm.model_executor.layers.fused_moe.config import (
FusedMoEQuantConfig, get_config_quant_dtype)
from vllm.model_executor.layers.fused_moe.cutlass_moe import (
_valid_cutlass_block_scaled_grouped_gemm,
run_cutlass_block_scaled_fused_experts)
# yapf: enable
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
_valid_deep_gemm, deep_gemm_moe_fp8)
from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
moe_align_block_size)
from vllm.model_executor.layers.fused_moe.prepare_finalize import (
MoEPrepareAndFinalizeNoEP)
from vllm.model_executor.layers.fused_moe.utils import (
_resize_cache, moe_kernel_quantize_input)
from vllm.platforms import current_platform
from vllm.triton_utils import tl, triton
from vllm.utils import direct_register_custom_op
from .rocm_aiter_fused_moe import is_rocm_aiter_moe_enabled
logger = init_logger(__name__)
@triton.jit
def write_zeros_to_output(c_ptr, stride_cm, stride_cn, pid_n, N, offs_token,
token_mask, BLOCK_SIZE_M, BLOCK_SIZE_N,
compute_type):
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=compute_type)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
None, :]
c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
@triton.jit
def fused_moe_kernel_gptq_awq(
# Pointers to matrices
a_ptr,
b_ptr,
c_ptr,
b_scale_ptr,
b_zp_ptr,
topk_weights_ptr,
sorted_token_ids_ptr,
expert_ids_ptr,
num_tokens_post_padded_ptr,
# Matrix dimensions
N: tl.constexpr,
K: tl.constexpr,
EM,
num_valid_tokens,
# The stride variables represent how much to increase the ptr by when
# moving by 1 element in a particular dimension. E.g. `stride_am` is
# how much to increase `a_ptr` by to get the element one row down
# (A has M rows).
stride_am,
stride_ak,
stride_be,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_bse,
stride_bsk,
stride_bsn,
stride_bze,
stride_bzk,
stride_bzn,
block_k_diviable: tl.constexpr,
group_size: tl.constexpr,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
MUL_ROUTED_WEIGHT: tl.constexpr,
top_k: tl.constexpr,
compute_type: tl.constexpr,
has_zp: tl.constexpr,
use_int4_w4a16: tl.constexpr,
use_int8_w8a16: tl.constexpr):
"""
Implements the fused computation for a Mixture of Experts (MOE) using
token and expert matrices.
Key Parameters:
- A: The input tensor representing tokens with shape (*, K), where '*' can
be any shape representing batches and K is the feature dimension of
each token.
- B: The stacked MOE weight tensor with shape (E, N, K), where E is
the number of experts, K is the input feature dimension, and N is
the output feature dimension.
- C: The output cache tensor with shape (M, topk, N), where M is the
total number of tokens post padding, topk is the number of times
each token is repeated, and N is the output feature dimension.
- sorted_token_ids: A tensor containing the sorted indices of tokens,
repeated topk times and arranged by the expert index they are
assigned to.
- expert_ids: A tensor containing the indices of the expert for each
block. It determines which expert matrix from B should be used for
each block in A.
This kernel performs the multiplication of a token by its corresponding
expert matrix as determined by `expert_ids`. The sorting of
`sorted_token_ids` by expert index and padding ensures divisibility by
BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
multiplication across different blocks processed by the same expert.
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse.
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
return
offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(
tl.int64)
offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
token_mask = offs_token < num_valid_tokens
off_experts = tl.load(expert_ids_ptr + pid_m).to(tl.int64)
if off_experts == -1:
# -----------------------------------------------------------
# Write back zeros to the output when the expert is not
# in the current expert parallel rank.
write_zeros_to_output(c_ptr, stride_cm, stride_cn, pid_n, N,
offs_token, token_mask, BLOCK_SIZE_M,
BLOCK_SIZE_N, compute_type)
return
offs_bn = (pid_n * BLOCK_SIZE_N +
tl.arange(0, BLOCK_SIZE_N).to(tl.int64)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_token[:, None] // top_k * stride_am +
offs_k[None, :] * stride_ak)
if use_int4_w4a16:
b_ptrs = b_ptr + off_experts * stride_be + \
(offs_k[:, None] // 2) * stride_bk + offs_bn[None, :] * \
stride_bn
b_shifter = (offs_k[:, None] % 2) * 4
elif use_int8_w8a16:
b_ptrs = b_ptr + off_experts * stride_be + \
offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn
if not has_zp and use_int4_w4a16:
b_zp_num = 8
if not has_zp and use_int8_w8a16:
b_zp_num = 128
elif has_zp and use_int4_w4a16:
b_zp_shifter = (offs_bn[None, :] % 2) * 4
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix.
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
# Load the next block of A and B, generate a mask by checking the
# K dimension.
if not block_k_diviable:
k_mask = offs_k[:, None] < K - k * BLOCK_SIZE_K
k_other = 0.0
else:
k_mask = None
k_other = None
a = tl.load(a_ptrs,
mask=token_mask[:, None] &
(offs_k[None, :] < K - k * BLOCK_SIZE_K),
other=0.0)
b = tl.load(b_ptrs)
if use_int4_w4a16:
b = (b >> b_shifter) & 0xF
b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + \
offs_bn[None, :] * stride_bsn + \
((offs_k[:, None] + BLOCK_SIZE_K * k) // group_size) * \
stride_bsk
b_scale = tl.load(b_scale_ptrs, mask=k_mask, other=k_other)
b_scale = b_scale.to(tl.float32)
if has_zp and use_int4_w4a16:
offs_k_true = (offs_k[:, None] + BLOCK_SIZE_K * k) // group_size
b_zp_ptrs = b_zp_ptr + off_experts * stride_bze + \
(offs_bn[None, :] // 2) * stride_bzn + \
offs_k_true * stride_bzk
b_zp = tl.load(b_zp_ptrs, mask=k_mask, other=k_other)
b_zp = ((b_zp >> b_zp_shifter) & 0xF)
b_zp = b_zp.to(tl.float32)
elif has_zp and use_int8_w8a16:
offs_k_true = (offs_k[:, None] + BLOCK_SIZE_K * k) // group_size
b_zp_ptrs = b_zp_ptr + off_experts * stride_bze + \
offs_bn[None, :] * stride_bzn + \
offs_k_true * stride_bzk
b_zp = tl.load(b_zp_ptrs, mask=k_mask, other=k_other)
b_zp = b_zp.to(tl.float32)
# We accumulate along the K dimension.
if has_zp:
b = ((b.to(tl.float32) - b_zp) * b_scale).to(compute_type)
else:
b = ((b.to(tl.float32) - b_zp_num) * b_scale).to(compute_type)
accumulator = tl.dot(a, b, acc=accumulator)
# Advance the ptrs to the next K block.
a_ptrs += BLOCK_SIZE_K * stride_ak
if use_int4_w4a16:
b_ptrs += (BLOCK_SIZE_K // 2) * stride_bk
else:
b_ptrs += BLOCK_SIZE_K * stride_bk
if MUL_ROUTED_WEIGHT:
moe_weight = tl.load(topk_weights_ptr + offs_token,
mask=token_mask,
other=0)
accumulator = accumulator * moe_weight[:, None]
accumulator = accumulator.to(compute_type)
# -----------------------------------------------------------
# Write back the block of the output
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
None, :]
c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
@triton.jit
def fused_moe_kernel(
# Pointers to matrices
a_ptr,
b_ptr,
c_ptr,
a_scale_ptr,
b_scale_ptr,
topk_weights_ptr,
sorted_token_ids_ptr,
expert_ids_ptr,
num_tokens_post_padded_ptr,
# Matrix dimensions
N,
K,
EM,
num_valid_tokens,
# The stride variables represent how much to increase the ptr by when
# moving by 1 element in a particular dimension. E.g. `stride_am` is
# how much to increase `a_ptr` by to get the element one row down
# (A has M rows).
stride_am,
stride_ak,
stride_be,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_asm,
stride_ask,
stride_bse,
stride_bsk,
stride_bsn,
# Block size for block-wise quantization
group_n: tl.constexpr,
group_k: tl.constexpr,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
MUL_ROUTED_WEIGHT: tl.constexpr,
top_k: tl.constexpr,
compute_type: tl.constexpr,
use_fp8_w8a8: tl.constexpr,
use_int8_w8a8: tl.constexpr,
use_int8_w8a16: tl.constexpr,
per_channel_quant: tl.constexpr,
):
"""
Implements the fused computation for a Mixture of Experts (MOE) using
token and expert matrices.
Key Parameters:
- A: The input tensor representing tokens with shape (*, K), where '*' can
be any shape representing batches and K is the feature dimension of
each token.
- B: The stacked MOE weight tensor with shape (E, N, K), where E is
the number of experts, K is the input feature dimension, and N is
the output feature dimension.
- C: The output cache tensor with shape (M, topk, N), where M is the
total number of tokens post padding, topk is the number of times
each token is repeated, and N is the output feature dimension.
- sorted_token_ids: A tensor containing the sorted indices of tokens,
repeated topk times and arranged by the expert index they are
assigned to.
- expert_ids: A tensor containing the indices of the expert for each
block. It determines which expert matrix from B should be used for
each block in A.
This kernel performs the multiplication of a token by its corresponding
expert matrix as determined by `expert_ids`. The sorting of
`sorted_token_ids` by expert index and padding ensures divisibility by
BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
multiplication across different blocks processed by the same expert.
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse.
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
return
offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(
tl.int64)
offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
token_mask = offs_token < num_valid_tokens
off_experts = tl.load(expert_ids_ptr + pid_m).to(tl.int64)
if off_experts == -1:
# -----------------------------------------------------------
# Write back zeros to the output when the expert is not
# in the current expert parallel rank.
write_zeros_to_output(c_ptr, stride_cm, stride_cn, pid_n, N,
offs_token, token_mask, BLOCK_SIZE_M,
BLOCK_SIZE_N, compute_type)
return
offs_bn = (pid_n * BLOCK_SIZE_N +
tl.arange(0, BLOCK_SIZE_N).to(tl.int64)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_token[:, None] // top_k * stride_am +
offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + off_experts * stride_be + (offs_k[:, None] * stride_bk +
offs_bn[None, :] * stride_bn)
if use_int8_w8a16:
b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + offs_bn[
None, :] * stride_bsn
b_scale = tl.load(b_scale_ptrs)
if use_fp8_w8a8 or use_int8_w8a8:
# block-wise
if group_k > 0 and group_n > 0:
a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
offs_bsn = offs_bn // group_n
b_scale_ptrs = (b_scale_ptr + off_experts * stride_bse +
offs_bsn * stride_bsn)
# channel-wise
elif per_channel_quant:
b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + offs_bn[
None, :] * stride_bsn
b_scale = tl.load(b_scale_ptrs)
# Load per-token scale for activations
a_scale_ptrs = a_scale_ptr + (offs_token // top_k) * stride_asm
a_scale = tl.load(a_scale_ptrs, mask=token_mask, other=0.0)[:,
None]
# tensor-wise
else:
a_scale = tl.load(a_scale_ptr)
b_scale = tl.load(b_scale_ptr + off_experts)
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix.
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop.
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
# Load the next block of A and B, generate a mask by checking the
# K dimension.
a = tl.load(a_ptrs,
mask=token_mask[:, None] &
(offs_k[None, :] < K - k * BLOCK_SIZE_K),
other=0.0)
b = tl.load(b_ptrs,
mask=offs_k[:, None] < K - k * BLOCK_SIZE_K,
other=0.0)
# We accumulate along the K dimension.
if use_int8_w8a16:
accumulator = tl.dot(a, b.to(compute_type), acc=accumulator)
elif use_fp8_w8a8 or use_int8_w8a8:
if group_k > 0 and group_n > 0:
k_start = k * BLOCK_SIZE_K
offs_ks = k_start // group_k
a_scale = tl.load(a_scale_ptrs + offs_ks * stride_ask,
mask=token_mask,
other=0.0)
b_scale = tl.load(b_scale_ptrs + offs_ks * stride_bsk)
accumulator += tl.dot(a, b) * a_scale[:,
None] * b_scale[None, :]
else:
if use_fp8_w8a8:
# acc used to enable fp8_fast_accum
accumulator = tl.dot(a, b, acc=accumulator)
else:
accumulator += tl.dot(a, b)
else:
accumulator += tl.dot(a, b)
# Advance the ptrs to the next K block.
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
if MUL_ROUTED_WEIGHT:
moe_weight = tl.load(topk_weights_ptr + offs_token,
mask=token_mask,
other=0)
accumulator = accumulator * moe_weight[:, None]
if use_int8_w8a16:
accumulator = (accumulator * b_scale).to(compute_type)
elif use_fp8_w8a8 or use_int8_w8a8:
if group_k > 0 and group_n > 0:
accumulator = accumulator.to(compute_type)
else:
accumulator = (accumulator * a_scale * b_scale).to(compute_type)
else:
accumulator = accumulator.to(compute_type)
# -----------------------------------------------------------
# Write back the block of the output
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[
None, :]
c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
def invoke_fused_moe_kernel(A: torch.Tensor,
B: torch.Tensor,
C: torch.Tensor,
A_scale: Optional[torch.Tensor],
B_scale: Optional[torch.Tensor],
B_zp: Optional[torch.Tensor],
topk_weights: Optional[torch.Tensor],
sorted_token_ids: torch.Tensor,
expert_ids: torch.Tensor,
num_tokens_post_padded: torch.Tensor,
mul_routed_weight: bool,
top_k: int,
config: dict[str, Any],
compute_type: tl.dtype,
use_fp8_w8a8: bool,
use_int8_w8a8: bool,
use_int8_w8a16: bool,
use_int4_w4a16: bool,
per_channel_quant: bool,
block_shape: Optional[list[int]] = None) -> None:
assert topk_weights is not None or not mul_routed_weight
assert topk_weights is None or topk_weights.stride(1) == 1
assert sorted_token_ids.stride(0) == 1
if use_fp8_w8a8 or use_int8_w8a8:
assert B_scale is not None
assert (block_shape is None
or triton.cdiv(B.size(-2), block_shape[0]) == B_scale.size(-2))
assert (block_shape is None
or triton.cdiv(B.size(-1), block_shape[1]) == B_scale.size(-1))
elif use_int8_w8a16 or use_int4_w4a16:
assert B_scale is not None
assert block_shape is None or block_shape[0] == 0
else:
assert A_scale is None
assert B_scale is None
M = A.size(0)
num_tokens = M * top_k
EM = sorted_token_ids.size(0)
if A.size(0) < config["BLOCK_SIZE_M"]:
# optimize for small batch_size.
# We assume that top_ids of each token is unique, so
# so num_valid_experts <= batch_size <= BLOCK_SIZE_M,
# and we can skip some invalid blocks.
EM = min(sorted_token_ids.size(0),
A.size(0) * top_k * config['BLOCK_SIZE_M'])
grid = lambda META: (triton.cdiv(EM, META['BLOCK_SIZE_M']) * triton.cdiv(
B.size(1), META['BLOCK_SIZE_N']), )
if (use_int8_w8a16 or use_int4_w4a16) and \
block_shape is not None and block_shape[1] > 0:
assert B_scale is not None and B_scale.ndim == 3
assert B_zp is None or B_zp.ndim == 3
use_moe_wna16_cuda = should_moe_wna16_use_cuda(
num_valid_tokens=num_tokens,
group_size=block_shape[1],
num_experts=B.size(0),
bit=4 if use_int4_w4a16 else 8)
config = config.copy()
config.update(
get_moe_wna16_block_config(config=config,
use_moe_wna16_cuda=use_moe_wna16_cuda,
num_valid_tokens=num_tokens,
size_k=A.size(1),
size_n=B.size(1),
num_experts=B.size(1),
group_size=block_shape[1],
real_top_k=top_k,
block_size_m=config["BLOCK_SIZE_M"]))
if use_moe_wna16_cuda:
bit = 4 if use_int4_w4a16 else 8
ops.moe_wna16_gemm(A, C, B, B_scale, B_zp,
topk_weights if mul_routed_weight else None,
sorted_token_ids, expert_ids,
num_tokens_post_padded, top_k,
config["BLOCK_SIZE_M"], config["BLOCK_SIZE_N"],
config["BLOCK_SIZE_K"], bit)
return
fused_moe_kernel_gptq_awq[grid](
A,
B,
C,
B_scale,
B_zp,
topk_weights,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
B.size(1),
A.size(1),
EM,
num_tokens,
A.stride(0),
A.stride(1),
B.stride(0),
B.stride(2),
B.stride(1),
C.stride(1),
C.stride(2),
B_scale.stride(0),
B_scale.stride(2),
B_scale.stride(1),
B_zp.stride(0) if B_zp is not None else 0,
B_zp.stride(2) if B_zp is not None else 0,
B_zp.stride(1) if B_zp is not None else 0,
block_k_diviable=A.size(1) % config["BLOCK_SIZE_K"] == 0,
group_size=block_shape[1],
MUL_ROUTED_WEIGHT=mul_routed_weight,
top_k=top_k,
compute_type=compute_type,
has_zp=B_zp is not None,
use_int4_w4a16=use_int4_w4a16,
use_int8_w8a16=use_int8_w8a16,
**config,
)
else:
config = config.copy()
BLOCK_SIZE_K = config.pop("BLOCK_SIZE_K")
if block_shape is not None:
BLOCK_SIZE_K = min(BLOCK_SIZE_K, min(block_shape[0],
block_shape[1]))
fused_moe_kernel[grid](
A,
B,
C,
A_scale,
B_scale,
topk_weights,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
B.size(1),
B.size(2),
EM,
num_tokens,
A.stride(0),
A.stride(1),
B.stride(0),
B.stride(2),
B.stride(1),
C.stride(1),
C.stride(2),
A_scale.stride(0)
if A_scale is not None and A_scale.ndim == 2 else 0,
A_scale.stride(1)
if A_scale is not None and A_scale.ndim == 2 else 0,
B_scale.stride(0)
if B_scale is not None and B_scale.ndim >= 2 else 0,
B_scale.stride(2)
if B_scale is not None and B_scale.ndim == 3 else 0,
B_scale.stride(1)
if B_scale is not None and B_scale.ndim >= 2 else 0,
0 if block_shape is None else block_shape[0],
0 if block_shape is None else block_shape[1],
MUL_ROUTED_WEIGHT=mul_routed_weight,
top_k=top_k,
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
per_channel_quant=per_channel_quant,
BLOCK_SIZE_K=BLOCK_SIZE_K,
**config,
)
# Adapted from: https://github.com/sgl-project/sglang/pull/2628
def get_config_file_name(E: int,
N: int,
dtype: Optional[str],
block_shape: Optional[list[int]] = None) -> str:
device_name = current_platform.get_device_name().replace(" ", "_")
dtype_selector = "" if not dtype else f",dtype={dtype}"
block_shape_selector = ("" if not block_shape or not all(block_shape) else
f",block_shape={block_shape}").replace(" ", "")
return f"E={E},N={N},device_name={device_name}{dtype_selector}{block_shape_selector}.json" # noqa: E501
# Adapted from: https://github.com/sgl-project/sglang/pull/2628
@functools.lru_cache
def get_moe_configs(
E: int,
N: int,
dtype: Optional[str],
block_n: Optional[int] = None,
block_k: Optional[int] = None,
) -> Optional[dict[int, Any]]:
"""
Return optimized configurations for the fused MoE kernel.
The return value will be a dictionary that maps an irregular grid of
batch sizes to configurations of the fused_moe kernel. To evaluate the
kernel on a given batch size bs, the closest batch size in the grid should
be picked and the associated configuration chosen to invoke the kernel.
"""
# First look up if an optimized configuration is available in the configs
# directory
block_shape = [block_n, block_k] if block_n and block_k else None
json_file_name = get_config_file_name(E, N, dtype, block_shape)
config_file_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name)
if os.path.exists(config_file_path):
with open(config_file_path) as f:
logger.info("Using configuration from %s for MoE layer.",
config_file_path)
# If a configuration has been found, return it
return {int(key): val for key, val in json.load(f).items()}
# If no optimized configuration is available, we will use the default
# configuration
logger.warning(
("Using default MoE config. Performance might be sub-optimal! "
"Config file not found at %s"), config_file_path)
return None
def get_moe_wna16_block_config(config: dict[str,
int], use_moe_wna16_cuda: bool,
num_valid_tokens: int, size_k: int, size_n: int,
num_experts: int, group_size: int,
real_top_k: int, block_size_m: int):
if "BLOCK_SIZE_N" in config and "BLOCK_SIZE_K" in config:
# optimal block config is set
return {}
if not use_moe_wna16_cuda:
# triton moe wna16 kernel
if num_valid_tokens // real_top_k == 1:
# if bs=1, use a smaller BLOCK_SIZE_N
return {"BLOCK_SIZE_N": 32, "BLOCK_SIZE_K": 64}
else:
return {"BLOCK_SIZE_N": 64, "BLOCK_SIZE_K": 32}
else:
# cuda moe wna16 kernel
# set default block_size 128, and increase them when num_blocks
# is too large.
block_size_n = 128
block_size_k = 128
if block_size_k <= group_size:
block_size_k = group_size
num_n_blocks = size_k // block_size_k
num_k_blocks = size_n // block_size_k
num_m_blocks = (num_valid_tokens + block_size_m - 1) / block_size_m + \
num_experts
if num_valid_tokens // real_top_k <= block_size_m:
num_m_blocks = min(num_m_blocks, num_valid_tokens)
num_blocks = num_m_blocks * num_n_blocks * num_k_blocks
if size_k % 256 == 0 and num_blocks >= 256 and \
block_size_k < 256:
block_size_k = 256
num_blocks = num_blocks // (256 // block_size_k)
if num_m_blocks <= 16 and size_k % (block_size_k * 2) == 0 and \
size_k % (block_size_k * 2) == 0 and block_size_k <= 512 and \
num_blocks >= 512:
block_size_k = block_size_k * 2
num_blocks = num_blocks // 2
if num_blocks > 1024:
block_size_n = 256
num_n_blocks = num_n_blocks // 2
num_blocks = num_blocks // 2
if size_n <= 1024 and num_blocks >= 1024:
# The kernel performance got much better with BLOCK_SIZE_N=1024
# when num_blocks is large, event when N is small.
# Not sure why, maybe it force the CUDA SM process only one block
# at the same time.
block_size_n = 1024
return {"BLOCK_SIZE_N": block_size_n, "BLOCK_SIZE_K": block_size_k}
def should_moe_wna16_use_cuda(num_valid_tokens: int, group_size: int,
num_experts: int, bit: int):
return bit == 4 and group_size in [32, 64, 128] and \
num_valid_tokens / num_experts <= 6
def get_default_config(
M: int,
E: int,
N: int,
K: int,
topk: int,
dtype: Optional[str],
is_marlin: bool,
block_shape: Optional[list[int]] = None,
) -> dict[str, int]:
if dtype == "fp8_w8a8" and block_shape is not None:
# Block-wise quant: BLOCK_SIZE_N must be divisible by block_shape[0]
# BLOCK_SIZE_K must be divisible by block_shape[1]
# num_stages=3 can cause triton.runtime.errors.OutOfResources
# on ROCm, set it to 2 instead.
config = {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": block_shape[0],
"BLOCK_SIZE_K": block_shape[1],
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 3 if not current_platform.is_rocm() else 2,
}
elif dtype in ["int4_w4a16", "int8_w8a16"] and block_shape is not None:
# moe wna16 kernels
# only set BLOCK_SIZE_M
# BLOCK_SIZE_N and BLOCK_SIZE_K would be set later
bit = 4 if dtype == "int4_w4a16" else 8
use_moe_wna16_cuda = should_moe_wna16_use_cuda(M * topk,
block_shape[1], E, bit)
if use_moe_wna16_cuda:
config = {"BLOCK_SIZE_M": min(16, M)}
elif M <= 20:
config = {"BLOCK_SIZE_M": 16, "GROUP_SIZE_M": 1}
elif M <= 40:
config = {"BLOCK_SIZE_M": 32, "GROUP_SIZE_M": 1}
else:
config = {"BLOCK_SIZE_M": 64, "GROUP_SIZE_M": 1}
elif is_marlin:
for block_size_m in [8, 16, 32, 48, 64]:
if M * topk / E / block_size_m < 0.9:
break
return {"BLOCK_SIZE_M": block_size_m}
elif M <= E:
config = {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
}
else:
config = {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
}
return config
def try_get_optimal_moe_config(
w1_shape: tuple[int, ...],
w2_shape: tuple[int, ...],
top_k: int,
dtype: Optional[str],
M: int,
is_marlin: bool = False,
block_shape: Optional[list[int]] = None,
) -> dict[str, int]:
from vllm.model_executor.layers.fused_moe import get_config
override_config = get_config()
if override_config:
config = override_config
else:
# First try to load optimal config from the file
E, _, N = w2_shape
if dtype == "int4_w4a16":
N = N * 2
block_n = block_shape[0] if block_shape else 0
block_k = block_shape[1] if block_shape else 0
configs = get_moe_configs(E, N, dtype, block_n, block_k)
if configs:
# If an optimal configuration map has been found, look up the
# optimal config
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
else:
# Else use the default config
config = get_default_config(M, E, N, w1_shape[2], top_k, dtype,
is_marlin, block_shape)
return config
def vllm_topk_softmax(topk_weights: torch.Tensor, topk_indices: torch.Tensor,
token_expert_indices: torch.Tensor,
gating_output: torch.Tensor,
renormalize: bool) -> tuple[torch.Tensor, ...]:
ops.topk_softmax(
topk_weights,
topk_indices,
token_expert_indices,
gating_output,
)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_indices
def dispatch_topk_func() -> Callable[..., tuple[torch.Tensor, ...]]:
if is_rocm_aiter_moe_enabled():
from .rocm_aiter_fused_moe import rocm_aiter_topk_softmax
return rocm_aiter_topk_softmax
return vllm_topk_softmax
def fused_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
indices_type: Optional[torch.dtype] = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
assert hidden_states.size(0) == gating_output.size(0), (
"Number of tokens mismatch")
M, _ = hidden_states.size()
topk_weights = torch.empty(M,
topk,
dtype=torch.float32,
device=hidden_states.device)
topk_ids = torch.empty(
M,
topk,
dtype=torch.int32 if indices_type is None else indices_type,
device=hidden_states.device)
token_expert_indices = torch.empty(M,
topk,
dtype=torch.int32,
device=hidden_states.device)
gating_output_float = gating_output.float() # TODO(woosuk): Optimize this.
topk_func = dispatch_topk_func()
topk_weights, topk_ids = topk_func(topk_weights, topk_ids,
token_expert_indices,
gating_output_float, renormalize)
return topk_weights, topk_ids, token_expert_indices
# This is used by the Deepseek-V2 and Deepseek-V3 model
@torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
def grouped_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int = 0,
topk_group: int = 0,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None
) -> tuple[torch.Tensor, torch.Tensor]:
assert hidden_states.size(0) == gating_output.size(0), (
"Number of tokens mismatch")
if scoring_func == "softmax":
scores = torch.softmax(gating_output, dim=-1)
elif scoring_func == "sigmoid":
scores = gating_output.sigmoid()
else:
raise ValueError(f"Unsupported scoring function: {scoring_func}")
num_token = scores.size(0)
if e_score_correction_bias is not None:
# Store original scores before applying correction bias. We use biased
# scores for expert selection but original scores for routing weights
original_scores = scores
scores = scores + e_score_correction_bias.unsqueeze(0)
group_scores = (scores.view(num_token, num_expert_group,
-1).topk(2, dim=-1)[0].sum(dim=-1))
else:
group_scores = scores.view(num_token, num_expert_group,
-1).max(dim=-1).values # [n, n_group]
group_idx = torch.topk(group_scores, k=topk_group, dim=-1,
sorted=False)[1] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = group_mask.unsqueeze(-1).expand(
num_token, num_expert_group,
scores.size(-1) // num_expert_group).reshape(num_token, -1) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(),
float("-inf")) # [n, e]
if e_score_correction_bias is not None:
topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)[1]
# Use original unbiased scores for the routing weights
topk_weights = original_scores.gather(1, topk_ids)
else:
topk_weights, topk_ids = torch.topk(tmp_scores,
k=topk,
dim=-1,
sorted=False)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights.to(torch.float32), topk_ids.to(torch.int32)
def get_config_dtype_str(
dtype: torch.dtype,
use_int4_w4a16: Optional[bool] = False,
use_int8_w8a16: Optional[bool] = False,
use_fp8_w8a8: Optional[bool] = False) -> Optional[str]:
if use_fp8_w8a8:
return "fp8_w8a8"
elif use_int8_w8a16:
return "int8_w8a16"
elif use_int4_w4a16:
return "int4_w4a16"
elif dtype == torch.float:
# avoiding cases where kernel fails when float32 MoE
# use fp16/bfloat16 configs
return "float32"
return None
def inplace_fused_experts(hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
w1_zp: Optional[torch.Tensor] = None,
w2_zp: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[list[int]] = None) -> None:
fused_experts_impl(hidden_states, w1, w2, topk_weights, topk_ids, True,
activation, apply_router_weight_on_input, use_fp8_w8a8,
use_int8_w8a8, use_int8_w8a16, use_int4_w4a16,
per_channel_quant, global_num_experts, expert_map,
w1_scale, w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
block_shape)
def inplace_fused_experts_fake(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
w1_zp: Optional[torch.Tensor] = None,
w2_zp: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[list[int]] = None) -> None:
pass
direct_register_custom_op(
op_name="inplace_fused_experts",
op_func=inplace_fused_experts,
mutates_args=["hidden_states"],
fake_impl=inplace_fused_experts_fake,
tags=(torch.Tag.needs_fixed_stride_order, ),
)
def outplace_fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
w1_zp: Optional[torch.Tensor] = None,
w2_zp: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[list[int]] = None) -> torch.Tensor:
return fused_experts_impl(hidden_states, w1, w2, topk_weights, topk_ids,
False, activation, apply_router_weight_on_input,
use_fp8_w8a8, use_int8_w8a8, use_int8_w8a16,
use_int4_w4a16, per_channel_quant,
global_num_experts, expert_map, w1_scale,
w2_scale, w1_zp, w2_zp, a1_scale, a2_scale,
block_shape)
def outplace_fused_experts_fake(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
activation: str = "silu",
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
w1_zp: Optional[torch.Tensor] = None,
w2_zp: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[list[int]] = None) -> torch.Tensor:
return torch.empty_like(hidden_states)
direct_register_custom_op(
op_name="outplace_fused_experts",
op_func=outplace_fused_experts,
mutates_args=[],
fake_impl=outplace_fused_experts_fake,
tags=(torch.Tag.needs_fixed_stride_order, ),
)
def torch_vllm_inplace_fused_experts(**kwargs) -> torch.Tensor:
torch.ops.vllm.inplace_fused_experts(**kwargs)
hidden_states = kwargs['hidden_states']
return hidden_states
def torch_vllm_outplace_fused_experts(**kwargs) -> torch.Tensor:
return torch.ops.vllm.outplace_fused_experts(**kwargs)
def dispatch_fused_experts_func(inplace: bool) -> Callable[..., torch.Tensor]:
if inplace:
return torch_vllm_inplace_fused_experts
return torch_vllm_outplace_fused_experts
# TODO (bnell): replace this with modular op. Can get rid of inplace/outplace
# torch ops.
def fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
w1_zp: Optional[torch.Tensor] = None,
w2_zp: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[list[int]] = None,
allow_deep_gemm: bool = False,
allow_cutlass_block_scaled_grouped_gemm: bool = False) -> torch.Tensor:
# For now, disable DeepGemm for small N (<= 512) until better
# permute/unpermute ops are available.
N = w1.size(1)
if (allow_deep_gemm and use_fp8_w8a8 and N > 512
and _valid_deep_gemm(hidden_states, w1, w2)):
assert apply_router_weight_on_input is False
return deep_gemm_moe_fp8(
hidden_states=hidden_states,
w1=w1,
w2=w2,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=inplace,
activation=activation,
global_num_experts=global_num_experts,
expert_map=expert_map,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
apply_router_weight_on_input=apply_router_weight_on_input,
)
elif (allow_cutlass_block_scaled_grouped_gemm and use_fp8_w8a8
and _valid_cutlass_block_scaled_grouped_gemm(hidden_states, w1, w2)):
assert apply_router_weight_on_input is False
return run_cutlass_block_scaled_fused_experts(
a=hidden_states,
w1=w1,
w2=w2,
w1_scale=w1_scale,
w2_scale=w2_scale,
topk_weights=topk_weights,
topk_ids=topk_ids)
else:
return dispatch_fused_experts_func(inplace)(
hidden_states=hidden_states,
w1=w1,
w2=w2,
topk_weights=topk_weights,
topk_ids=topk_ids,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,
per_channel_quant=per_channel_quant,
global_num_experts=global_num_experts,
expert_map=expert_map,
w1_scale=w1_scale,
w2_scale=w2_scale,
w1_zp=w1_zp,
w2_zp=w2_zp,
a1_scale=a1_scale,
a2_scale=a2_scale,
block_shape=block_shape)
def fused_experts_impl(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
w1_zp: Optional[torch.Tensor] = None,
w2_zp: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[list[int]] = None,
) -> torch.Tensor:
# Check constraints.
if use_int4_w4a16:
assert hidden_states.size(1) // 2 == w1.size(2), (
"Hidden size mismatch")
else:
assert hidden_states.size(1) == w1.size(2), (
f"Hidden size mismatch {hidden_states.size(1)} != {w1.size(2)}")
assert topk_weights.size() == topk_ids.size(), "topk shape mismatch"
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
assert hidden_states.dtype in [
torch.float32, torch.float16, torch.bfloat16
]
num_tokens = hidden_states.size(0)
E, N, _ = w1.size()
K = w2.size(1)
if global_num_experts == -1:
global_num_experts = E
top_k_num = topk_ids.size(1)
# We execute the fused_moe kernel in chunks to circumvent this issue:
# https://github.com/vllm-project/vllm/issues/5938
CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
M = min(num_tokens, CHUNK_SIZE)
config_dtype = get_config_dtype_str(use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,
dtype=hidden_states.dtype)
qtype = get_config_quant_dtype(use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16)
get_config_func = functools.partial(
try_get_optimal_moe_config,
w1.size(),
w2.size(),
top_k_num,
config_dtype,
block_shape=block_shape,
)
config = get_config_func(M)
# We can reuse the memory between these because by the time we need
# cache3, we're done with cache1
cache13 = torch.empty(M * top_k_num * max(N, K),
device=hidden_states.device,
dtype=hidden_states.dtype)
intermediate_cache1 = cache13[:M * top_k_num * N].view(M, top_k_num, N)
intermediate_cache3 = cache13[:M * top_k_num * K].view(M, top_k_num, K)
# This needs separate memory since it's used concurrently with cache1
intermediate_cache2 = torch.empty((M * top_k_num, N // 2),
device=hidden_states.device,
dtype=hidden_states.dtype)
if hidden_states.dtype == torch.bfloat16:
compute_type = tl.bfloat16
elif hidden_states.dtype == torch.float16:
compute_type = tl.float16
elif hidden_states.dtype == torch.float32:
compute_type = tl.float32
else:
raise ValueError(f"Unsupported compute_type: {hidden_states.dtype}")
if inplace:
out_hidden_states = hidden_states
else:
out_hidden_states = torch.empty_like(hidden_states)
for chunk in range((num_tokens // CHUNK_SIZE) + 1):
begin_chunk_idx, end_chunk_idx = (chunk * CHUNK_SIZE,
min((chunk + 1) * CHUNK_SIZE,
num_tokens))
curr_hidden_states = hidden_states[begin_chunk_idx:end_chunk_idx]
tokens_in_chunk, _ = curr_hidden_states.size()
if tokens_in_chunk == 0:
break
if tokens_in_chunk < CHUNK_SIZE and chunk > 0:
# Adjust the intermediate cache size and config for the last
# chunk. Note that in most cases we only have one chunk
# so the cache size and config are already set correctly and
# do not need to be adjusted.
intermediate_cache1 = intermediate_cache1[:tokens_in_chunk]
intermediate_cache2 = intermediate_cache2[:tokens_in_chunk *
topk_ids.size(1)]
intermediate_cache3 = intermediate_cache3[:tokens_in_chunk]
config = get_config_func(tokens_in_chunk)
curr_topk_ids = topk_ids[begin_chunk_idx:end_chunk_idx]
curr_topk_weights = topk_weights[begin_chunk_idx:end_chunk_idx]
qcurr_hidden_states, a1q_scale = moe_kernel_quantize_input(
A=curr_hidden_states,
A_scale=a1_scale,
quant_dtype=qtype,
per_act_token_quant=per_channel_quant,
block_shape=block_shape)
sorted_token_ids, expert_ids, num_tokens_post_padded = (
moe_align_block_size(curr_topk_ids, config['BLOCK_SIZE_M'],
global_num_experts, expert_map))
invoke_fused_moe_kernel(qcurr_hidden_states,
w1,
intermediate_cache1,
a1q_scale,
w1_scale,
w1_zp,
curr_topk_weights,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
apply_router_weight_on_input,
top_k_num,
config,
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,
per_channel_quant=per_channel_quant,
block_shape=block_shape)
if activation == "silu":
torch.ops._C.silu_and_mul(intermediate_cache2,
intermediate_cache1.view(-1, N))
elif activation == "gelu":
torch.ops._C.gelu_and_mul(intermediate_cache2,
intermediate_cache1.view(-1, N))
else:
raise ValueError(f"Unsupported FusedMoe activation: {activation}")
qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
A=intermediate_cache2,
A_scale=a2_scale,
quant_dtype=qtype,
per_act_token_quant=per_channel_quant,
block_shape=block_shape)
invoke_fused_moe_kernel(qintermediate_cache2,
w2,
intermediate_cache3,
a2q_scale,
w2_scale,
w2_zp,
curr_topk_weights,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
not apply_router_weight_on_input,
1,
config,
compute_type=compute_type,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,
per_channel_quant=per_channel_quant,
block_shape=block_shape)
ops.moe_sum(intermediate_cache3.view(*intermediate_cache3.size()),
out_hidden_states[begin_chunk_idx:end_chunk_idx])
return out_hidden_states
def fused_moe(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
inplace: bool = False,
activation: str = "silu",
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
w1_zp: Optional[torch.Tensor] = None,
w2_zp: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[list[int]] = None,
) -> torch.Tensor:
"""
This function computes a Mixture of Experts (MoE) layer using two sets of
weights, w1 and w2, and top-k gating mechanism.
Parameters:
- hidden_states (torch.Tensor): The input tensor to the MoE layer.
- w1 (torch.Tensor): The first set of expert weights.
- w2 (torch.Tensor): The second set of expert weights.
- gating_output (torch.Tensor): The output of the gating operation
(before softmax).
- topk (int): The number of top-k experts to select.
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
- inplace (bool): If True, perform the operation in-place.
Defaults to False.
- activation (str): The activation function to apply after the first
MoE layer.
- num_expert_group: Optional[int]: additional parameter for grouped_topk
- topk_group: Optional[int]: additional parameter for grouped_topk
- use_grouped_topk: If True, use grouped_topk instead of fused_topk
note: Deepseekv2 model uses grouped_topk
- use_fp8_w8a8 (bool): If True, use fp8 arithmetic to compute the inner
products for w1 and w2. Defaults to False.
- use_int8_w8a8 (bool): If True, use int8 arithmetic to compute the inner
products for w1 and w2. Defaults to False.
- use_int8_w8a16 (bool): If True, use matmul of int8 weight and bf16/fp16
activation to compute the inner products for w1 and w2.
Defaults to False.
- use_int4_w4a16 (bool): If True, use matmul of int4 weight and bf16/fp16
activation to compute the inner products for w1 and w2.
Defaults to False.
- global_num_experts (int): The total number of experts in the global
expert space.
- expert_map (Optional[torch.Tensor]): A tensor mapping expert indices
from the global expert space to the local expert space of the expert
parallel shard.
- w1_scale (Optional[torch.Tensor]): Optional scale to be used for
w1.
- w2_scale (Optional[torch.Tensor]): Optional scale to be used for
w2.
- a1_scale (Optional[torch.Tensor]): Optional scale to be used for
a1.
- a2_scale (Optional[torch.Tensor]): Optional scale to be used for
a2.
- block_shape: (Optional[list[int]]): Optional block size for block-wise
quantization.
Returns:
- torch.Tensor: The output tensor after applying the MoE layer.
"""
if use_grouped_topk:
assert num_expert_group is not None and topk_group is not None
topk_weights, topk_ids = grouped_topk(hidden_states, gating_output,
topk, renormalize,
num_expert_group, topk_group)
elif custom_routing_function is None:
topk_weights, topk_ids, token_expert_indices = fused_topk(
hidden_states, gating_output, topk, renormalize)
else:
topk_weights, topk_ids = custom_routing_function(
hidden_states, gating_output, topk, renormalize)
return fused_experts(hidden_states,
w1,
w2,
topk_weights,
topk_ids,
inplace=inplace,
activation=activation,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,
per_channel_quant=per_channel_quant,
global_num_experts=global_num_experts,
expert_map=expert_map,
w1_scale=w1_scale,
w2_scale=w2_scale,
w1_zp=w1_zp,
w2_zp=w2_zp,
a1_scale=a1_scale,
a2_scale=a2_scale,
block_shape=block_shape)
class TritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
def __init__(
self,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_act_token_quant: bool = False,
block_shape: Optional[list[int]] = None,
):
super().__init__(
FusedMoEQuantConfig.make(
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,
per_act_token_quant=per_act_token_quant,
block_shape=block_shape,
))
self.use_fp8_w8a8 = use_fp8_w8a8
self.use_int4_w4a16 = use_int4_w4a16
self.use_int8_w8a8 = use_int8_w8a8
self.use_int8_w8a16 = use_int8_w8a16
@property
def activation_formats(
self
) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
return (mk.FusedMoEActivationFormat.Standard,
mk.FusedMoEActivationFormat.Standard)
def supports_chunking(self) -> bool:
return True
def supports_expert_map(self) -> bool:
return True
def workspace_shapes(
self,
a: torch.Tensor,
aq: torch.Tensor,
M: int,
N: int,
K: int,
topk: int,
global_num_experts: int,
local_num_experts: int,
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
workspace1 = (M, topk, max(N * 2, K))
workspace2 = (M, topk, N)
output = (M, topk, K)
return (workspace1, workspace2, output, a.dtype)
def apply(
self,
output: torch.Tensor,
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_ids: torch.Tensor,
activation: str,
global_num_experts: int,
expert_map: Optional[torch.Tensor],
w1_scale: Optional[torch.Tensor],
w2_scale: Optional[torch.Tensor],
w1_zp: Optional[torch.Tensor],
w2_zp: Optional[torch.Tensor],
a1q_scale: Optional[torch.Tensor],
a2_scale: Optional[torch.Tensor],
workspace13: torch.Tensor,
workspace2: torch.Tensor,
expert_num_tokens: Optional[torch.Tensor],
):
# Check constraints.
if self.use_int4_w4a16:
assert hidden_states.size(-1) // 2 == w1.size(2), (
"Hidden size mismatch")
else:
assert hidden_states.size(-1) == w1.size(2), \
(f"Hidden size mismatch {hidden_states.size(-1)} "
f"!= {w1.size(2)}")
assert hidden_states.is_contiguous(
), "Hidden_states must be contiguous"
assert hidden_states.dim() == 2
assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
assert hidden_states.dtype in [
torch.float32, torch.float16, torch.bfloat16, torch.float8_e4m3fn
]
E, num_tokens, N, K, top_k_num = mk._moe_problem_size(
hidden_states, w1, w2, topk_ids)
if global_num_experts == -1:
global_num_experts = E
config_dtype = get_config_dtype_str(use_fp8_w8a8=self.use_fp8_w8a8,
use_int8_w8a16=self.use_int8_w8a16,
use_int4_w4a16=self.use_int4_w4a16,
dtype=hidden_states.dtype)
config = try_get_optimal_moe_config(
w1.size(),
w2.size(),
top_k_num,
config_dtype,
num_tokens,
block_shape=self.block_shape,
)
if hidden_states.dtype == torch.bfloat16:
compute_type = tl.bfloat16
elif hidden_states.dtype == torch.float16:
compute_type = tl.float16
elif hidden_states.dtype == torch.float32:
compute_type = tl.float32
elif hidden_states.dtype == torch.float8_e4m3fn:
compute_type = tl.bfloat16
else:
raise ValueError(
f"Unsupported compute_type: {hidden_states.dtype}")
# We can reuse the memory between these because by the time we need
# cache3, we're done with cache1
intermediate_cache1 = _resize_cache(workspace13,
(num_tokens, top_k_num, N))
intermediate_cache2 = _resize_cache(workspace2,
(num_tokens * top_k_num, N // 2))
sorted_token_ids, expert_ids, num_tokens_post_padded = (
moe_align_block_size(topk_ids, config['BLOCK_SIZE_M'],
global_num_experts, expert_map))
invoke_fused_moe_kernel(hidden_states,
w1,
intermediate_cache1,
a1q_scale,
w1_scale,
w1_zp,
None,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
False,
top_k_num,
config,
compute_type=compute_type,
use_fp8_w8a8=self.use_fp8_w8a8,
use_int8_w8a8=self.use_int8_w8a8,
use_int8_w8a16=self.use_int8_w8a16,
use_int4_w4a16=self.use_int4_w4a16,
per_channel_quant=self.per_act_token_quant,
block_shape=self.block_shape)
self.activation(activation, intermediate_cache2,
intermediate_cache1.view(-1, N))
a2q_scale: Optional[torch.Tensor] = None
qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
intermediate_cache2, a2_scale, self.quant_dtype,
self.per_act_token_quant, self.block_shape)
invoke_fused_moe_kernel(qintermediate_cache2,
w2,
output,
a2q_scale,
w2_scale,
w2_zp,
None,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
False,
1,
config,
compute_type=compute_type,
use_fp8_w8a8=self.use_fp8_w8a8,
use_int8_w8a8=self.use_int8_w8a8,
use_int8_w8a16=self.use_int8_w8a16,
use_int4_w4a16=self.use_int4_w4a16,
per_channel_quant=self.per_act_token_quant,
block_shape=self.block_shape)
def modular_triton_fused_moe(
use_fp8_w8a8: bool,
use_int8_w8a8: bool,
use_int8_w8a16: bool,
use_int4_w4a16: bool,
per_act_token_quant: bool,
block_shape: Optional[list[int]] = None,
) -> mk.FusedMoEModularKernel:
return mk.FusedMoEModularKernel(
MoEPrepareAndFinalizeNoEP(),
TritonExperts(
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
use_int4_w4a16=use_int4_w4a16,
per_act_token_quant=per_act_token_quant,
block_shape=block_shape,
),
)