636 lines
27 KiB
Python
636 lines
27 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""A GPU worker class."""
|
|
import copy
|
|
import gc
|
|
import os
|
|
from contextlib import AbstractContextManager, nullcontext
|
|
from typing import TYPE_CHECKING, Any, Optional
|
|
|
|
import torch
|
|
import torch.distributed
|
|
import torch.nn as nn
|
|
|
|
import vllm.envs as envs
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import (ensure_model_parallel_initialized,
|
|
init_distributed_environment,
|
|
set_custom_all_reduce)
|
|
from vllm.distributed.kv_transfer import ensure_kv_transfer_initialized
|
|
from vllm.distributed.parallel_state import get_pp_group, get_tp_group
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.model_executor import set_random_seed
|
|
from vllm.model_executor.warmup.kernel_warmup import kernel_warmup
|
|
from vllm.platforms import current_platform
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.tasks import SupportedTask
|
|
from vllm.utils import GiB_bytes, MemorySnapshot, memory_profiling
|
|
from vllm.v1.engine import ReconfigureDistributedRequest, ReconfigureRankType
|
|
from vllm.v1.kv_cache_interface import KVCacheConfig, KVCacheSpec
|
|
from vllm.v1.outputs import (EMPTY_MODEL_RUNNER_OUTPUT, DraftTokenIds,
|
|
ModelRunnerOutput)
|
|
from vllm.v1.utils import report_usage_stats
|
|
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
|
|
from vllm.v1.worker.worker_base import WorkerBase
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
|
|
from vllm.v1.core.sched.output import SchedulerOutput
|
|
|
|
|
|
class Worker(WorkerBase):
|
|
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
local_rank: int,
|
|
rank: int,
|
|
distributed_init_method: str,
|
|
is_driver_worker: bool = False,
|
|
):
|
|
|
|
super().__init__(vllm_config=vllm_config,
|
|
local_rank=local_rank,
|
|
rank=rank,
|
|
distributed_init_method=distributed_init_method,
|
|
is_driver_worker=is_driver_worker)
|
|
|
|
if self.model_config.trust_remote_code:
|
|
# note: lazy import to avoid importing torch before initializing
|
|
from vllm.utils import init_cached_hf_modules
|
|
init_cached_hf_modules()
|
|
|
|
# Buffers saved before sleep
|
|
self._sleep_saved_buffers: dict[str, torch.Tensor] = {}
|
|
|
|
# Torch profiler. Enabled and configured through env vars:
|
|
# VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
|
|
if envs.VLLM_TORCH_PROFILER_DIR:
|
|
torch_profiler_trace_dir = envs.VLLM_TORCH_PROFILER_DIR
|
|
logger.info("Profiling enabled. Traces will be saved to: %s",
|
|
torch_profiler_trace_dir)
|
|
logger.debug(
|
|
"Profiler config: record_shapes=%s,"
|
|
"profile_memory=%s,with_stack=%s,with_flops=%s",
|
|
envs.VLLM_TORCH_PROFILER_RECORD_SHAPES,
|
|
envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
|
|
envs.VLLM_TORCH_PROFILER_WITH_STACK,
|
|
envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
|
|
)
|
|
self.profiler = torch.profiler.profile(
|
|
activities=[
|
|
torch.profiler.ProfilerActivity.CPU,
|
|
torch.profiler.ProfilerActivity.CUDA,
|
|
],
|
|
record_shapes=envs.VLLM_TORCH_PROFILER_RECORD_SHAPES,
|
|
profile_memory=envs.VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
|
|
with_stack=envs.VLLM_TORCH_PROFILER_WITH_STACK,
|
|
with_flops=envs.VLLM_TORCH_PROFILER_WITH_FLOPS,
|
|
on_trace_ready=torch.profiler.tensorboard_trace_handler(
|
|
torch_profiler_trace_dir, use_gzip=True))
|
|
else:
|
|
self.profiler = None
|
|
|
|
def sleep(self, level: int = 1) -> None:
|
|
from vllm.device_allocator.cumem import CuMemAllocator
|
|
|
|
free_bytes_before_sleep = torch.cuda.mem_get_info()[0]
|
|
|
|
# Save the buffers before level 2 sleep
|
|
if level == 2:
|
|
model = self.model_runner.model
|
|
self._sleep_saved_buffers = {
|
|
name: buffer.cpu().clone()
|
|
for name, buffer in model.named_buffers()
|
|
}
|
|
|
|
allocator = CuMemAllocator.get_instance()
|
|
allocator.sleep(offload_tags=("weights", ) if level == 1 else tuple())
|
|
free_bytes_after_sleep, total = torch.cuda.mem_get_info()
|
|
freed_bytes = free_bytes_after_sleep - free_bytes_before_sleep
|
|
used_bytes = total - free_bytes_after_sleep
|
|
assert freed_bytes >= 0, "Memory usage increased after sleeping."
|
|
logger.info(
|
|
"Sleep mode freed %.2f GiB memory, "
|
|
"%.2f GiB memory is still in use.", freed_bytes / GiB_bytes,
|
|
used_bytes / GiB_bytes)
|
|
|
|
def wake_up(self, tags: Optional[list[str]] = None) -> None:
|
|
from vllm.device_allocator.cumem import CuMemAllocator
|
|
|
|
allocator = CuMemAllocator.get_instance()
|
|
allocator.wake_up(tags)
|
|
|
|
# Restore the buffers after level 2 sleep
|
|
if len(self._sleep_saved_buffers):
|
|
model = self.model_runner.model
|
|
for name, buffer in model.named_buffers():
|
|
if name in self._sleep_saved_buffers:
|
|
buffer.data.copy_(self._sleep_saved_buffers[name].data)
|
|
self._sleep_saved_buffers = {}
|
|
|
|
def _maybe_get_memory_pool_context(self,
|
|
tag: str) -> AbstractContextManager:
|
|
if self.vllm_config.model_config.enable_sleep_mode:
|
|
from vllm.device_allocator.cumem import CuMemAllocator
|
|
|
|
allocator = CuMemAllocator.get_instance()
|
|
if tag == "weights":
|
|
assert allocator.get_current_usage() == 0, (
|
|
"Sleep mode can only be "
|
|
"used for one instance per process.")
|
|
context = allocator.use_memory_pool(tag=tag)
|
|
else:
|
|
context = nullcontext()
|
|
return context
|
|
|
|
def initialize_cache(self, num_gpu_blocks: int,
|
|
num_cpu_blocks: int) -> None:
|
|
self.cache_config.num_gpu_blocks = num_gpu_blocks
|
|
self.cache_config.num_cpu_blocks = num_cpu_blocks
|
|
|
|
def init_device(self):
|
|
if self.device_config.device.type == "cuda":
|
|
# torch.distributed.all_reduce does not free the input tensor until
|
|
# the synchronization point. This causes the memory usage to grow
|
|
# as the number of all_reduce calls increases. This env var disables
|
|
# this behavior.
|
|
# Related issue:
|
|
# https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
|
|
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
|
|
|
|
# This env var set by Ray causes exceptions with graph building.
|
|
os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
|
|
self.device = torch.device(f"cuda:{self.local_rank}")
|
|
current_platform.set_device(self.device)
|
|
|
|
_check_if_gpu_supports_dtype(self.model_config.dtype)
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
# take current memory snapshot
|
|
self.init_snapshot = MemorySnapshot()
|
|
self.requested_memory = (self.init_snapshot.total_memory *
|
|
self.cache_config.gpu_memory_utilization)
|
|
if self.init_snapshot.free_memory < self.requested_memory:
|
|
GiB = lambda b: round(b / GiB_bytes, 2)
|
|
raise ValueError(
|
|
f"Free memory on device "
|
|
f"({GiB(self.init_snapshot.free_memory)}/"
|
|
f"{GiB(self.init_snapshot.total_memory)} GiB) on startup "
|
|
f"is less than desired GPU memory utilization "
|
|
f"({self.cache_config.gpu_memory_utilization}, "
|
|
f"{GiB(self.requested_memory)} GiB). Decrease GPU memory "
|
|
f"utilization or reduce GPU memory used by other processes."
|
|
)
|
|
else:
|
|
raise RuntimeError(
|
|
f"Not support device type: {self.device_config.device}")
|
|
# Initialize the distributed environment.
|
|
init_worker_distributed_environment(self.vllm_config, self.rank,
|
|
self.distributed_init_method,
|
|
self.local_rank,
|
|
current_platform.dist_backend)
|
|
# Set random seed.
|
|
set_random_seed(self.model_config.seed)
|
|
|
|
# Construct the model runner
|
|
self.model_runner: GPUModelRunner = GPUModelRunner(
|
|
self.vllm_config, self.device)
|
|
|
|
if self.rank == 0:
|
|
# If usage stat is enabled, collect relevant info.
|
|
report_usage_stats(self.vllm_config)
|
|
|
|
# FIXME(youkaichao & ywang96): Use TorchDispatchMode instead of memory pool
|
|
# to hijack tensor allocation.
|
|
def load_model(self) -> None:
|
|
eep_scale_up = os.environ.get("VLLM_ELASTIC_EP_SCALE_UP_LAUNCH") == "1"
|
|
with self._maybe_get_memory_pool_context(tag="weights"):
|
|
self.model_runner.load_model(eep_scale_up=eep_scale_up)
|
|
|
|
def update_config(self, overrides: dict[str, Any]) -> None:
|
|
self.model_runner.update_config(overrides)
|
|
|
|
def reload_weights(self) -> None:
|
|
with self._maybe_get_memory_pool_context(tag="weights"):
|
|
self.model_runner.reload_weights()
|
|
|
|
@torch.inference_mode()
|
|
def determine_available_memory(self) -> int:
|
|
"""Profiles the peak memory usage of the model to determine how much
|
|
memory can be used for KV cache without OOMs.
|
|
|
|
The engine will first conduct a profiling of the existing memory usage.
|
|
Then, it calculate the free memory that can be used for KV cache in
|
|
bytes.
|
|
|
|
Tip:
|
|
You may limit the usage of GPU memory
|
|
by adjusting the `gpu_memory_utilization` parameter.
|
|
"""
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
GiB = lambda b: b / GiB_bytes
|
|
|
|
# Execute a forward pass with dummy inputs to profile the memory usage
|
|
# of the model.
|
|
with memory_profiling(
|
|
self.init_snapshot,
|
|
weights_memory=int(
|
|
self.model_runner.model_memory_usage)) as profile_result:
|
|
self.model_runner.profile_run()
|
|
|
|
free_gpu_memory = profile_result.after_profile.free_memory
|
|
# NOTE(woosuk): Here we assume that the other processes using the same
|
|
# GPU did not change their memory usage during the profiling.
|
|
assert self.init_snapshot.free_memory > free_gpu_memory, (
|
|
"Error in memory profiling. "
|
|
f"Initial free memory {GiB(self.init_snapshot.free_memory)} GiB, "
|
|
f"current free memory {GiB(free_gpu_memory)} GiB. "
|
|
"This happens when other processes sharing the same container "
|
|
"release GPU memory while vLLM is profiling during initialization. "
|
|
"To fix this, ensure consistent GPU memory allocation or "
|
|
"isolate vLLM in its own container.")
|
|
available_kv_cache_memory = self.requested_memory \
|
|
- profile_result.non_kv_cache_memory
|
|
|
|
unrequested_memory = self.init_snapshot.free_memory \
|
|
- self.requested_memory
|
|
logger.debug(
|
|
"Initial free memory: %.2f GiB; "
|
|
"Requested memory: %.2f (util), %.2f GiB",
|
|
GiB(self.init_snapshot.free_memory),
|
|
self.cache_config.gpu_memory_utilization,
|
|
GiB(self.requested_memory),
|
|
)
|
|
logger.debug(
|
|
"Free memory after profiling: %.2f GiB (total), "
|
|
"%.2f GiB (within requested)",
|
|
GiB(free_gpu_memory),
|
|
GiB(free_gpu_memory - unrequested_memory),
|
|
)
|
|
logger.debug(profile_result)
|
|
logger.info("Available KV cache memory: %.2f GiB",
|
|
GiB(available_kv_cache_memory))
|
|
gc.collect()
|
|
|
|
return int(available_kv_cache_memory)
|
|
|
|
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
|
|
return self.model_runner.get_kv_cache_spec()
|
|
|
|
def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
|
|
"""Allocate GPU KV cache with the specified kv_cache_config."""
|
|
|
|
if self.vllm_config.model_config.enable_sleep_mode:
|
|
from vllm.device_allocator.cumem import CuMemAllocator
|
|
|
|
allocator = CuMemAllocator.get_instance()
|
|
context = allocator.use_memory_pool(tag="kv_cache")
|
|
else:
|
|
context = nullcontext()
|
|
with context:
|
|
self.model_runner.initialize_kv_cache(kv_cache_config)
|
|
|
|
def compile_or_warm_up_model(self) -> None:
|
|
# warm up sizes that are not in cudagraph capture sizes,
|
|
# but users still want to compile for better performance,
|
|
# e.g. for the max-num-batched token size in chunked prefill.
|
|
warmup_sizes = self.vllm_config.compilation_config.compile_sizes.copy()
|
|
if not self.model_config.enforce_eager:
|
|
warmup_sizes = [
|
|
x for x in warmup_sizes if x not in
|
|
self.vllm_config.compilation_config.cudagraph_capture_sizes
|
|
]
|
|
# We skip EPLB here since we don't want to record dummy metrics
|
|
for size in sorted(warmup_sizes, reverse=True):
|
|
logger.info("Compile and warming up model for size %d", size)
|
|
self.model_runner._dummy_run(size, skip_eplb=True)
|
|
|
|
if not self.model_config.enforce_eager:
|
|
self.model_runner.capture_model()
|
|
|
|
# Warm up sampler and preallocate memory buffer for logits and other
|
|
# sampling related tensors of max possible shape to avoid memory
|
|
# fragmentation issue.
|
|
# NOTE: This is called after `capture_model` on purpose to prevent
|
|
# memory buffers from being cleared by `torch.cuda.empty_cache`.
|
|
if get_pp_group().is_last_rank:
|
|
max_num_reqs = min(self.scheduler_config.max_num_seqs,
|
|
self.scheduler_config.max_num_batched_tokens)
|
|
|
|
# We skip EPLB here since we don't want to record dummy metrics
|
|
hidden_states, last_hidden_states = \
|
|
self.model_runner._dummy_run(
|
|
num_tokens=max_num_reqs,
|
|
skip_eplb=True,
|
|
)
|
|
if self.model_runner.is_pooling_model:
|
|
self.model_runner._dummy_pooler_run(hidden_states)
|
|
else:
|
|
self.model_runner._dummy_sampler_run(
|
|
hidden_states=last_hidden_states)
|
|
|
|
# Warmup kernels used during model execution
|
|
kernel_warmup(self)
|
|
|
|
# Reset the seed to ensure that the random state is not affected by
|
|
# the model initialization and profiling.
|
|
set_random_seed(self.model_config.seed)
|
|
|
|
def get_model(self) -> nn.Module:
|
|
return self.model_runner.get_model()
|
|
|
|
def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
|
|
return self.model_runner.get_supported_tasks()
|
|
|
|
@torch.inference_mode()
|
|
def execute_model(
|
|
self,
|
|
scheduler_output: "SchedulerOutput",
|
|
) -> Optional[ModelRunnerOutput]:
|
|
intermediate_tensors = None
|
|
if not get_pp_group().is_first_rank:
|
|
intermediate_tensors = IntermediateTensors(
|
|
get_pp_group().recv_tensor_dict(
|
|
all_gather_group=get_tp_group()))
|
|
|
|
output = self.model_runner.execute_model(scheduler_output,
|
|
intermediate_tensors)
|
|
|
|
parallel_config = self.vllm_config.parallel_config
|
|
if parallel_config.distributed_executor_backend != "external_launcher" \
|
|
and not get_pp_group().is_last_rank:
|
|
assert isinstance(output, IntermediateTensors)
|
|
get_pp_group().send_tensor_dict(output.tensors,
|
|
all_gather_group=get_tp_group())
|
|
|
|
kv_connector_output = output.kv_connector_output
|
|
if not kv_connector_output:
|
|
return None
|
|
|
|
# In case of PP with kv transfer, we need to pass through the
|
|
# kv_connector_output
|
|
if (not kv_connector_output.finished_sending
|
|
and not kv_connector_output.finished_recving):
|
|
return EMPTY_MODEL_RUNNER_OUTPUT
|
|
|
|
output = copy.copy(EMPTY_MODEL_RUNNER_OUTPUT)
|
|
output.kv_connector_output = kv_connector_output
|
|
return output
|
|
|
|
assert isinstance(output, ModelRunnerOutput)
|
|
return output
|
|
|
|
def take_draft_token_ids(self) -> Optional[DraftTokenIds]:
|
|
return self.model_runner.take_draft_token_ids()
|
|
|
|
def profile(self, is_start: bool = True):
|
|
if self.profiler is None:
|
|
raise RuntimeError("Profiler is not enabled.")
|
|
if is_start:
|
|
self.profiler.start()
|
|
else:
|
|
self.profiler.stop()
|
|
print(self.profiler.key_averages().table(
|
|
sort_by="self_cuda_time_total"))
|
|
|
|
def execute_dummy_batch(self) -> None:
|
|
self.model_runner._dummy_run(1)
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
return self.model_runner.add_lora(lora_request)
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
return self.model_runner.remove_lora(lora_id)
|
|
|
|
def list_loras(self) -> set[int]:
|
|
return self.model_runner.list_loras()
|
|
|
|
def pin_lora(self, lora_id: int) -> bool:
|
|
return self.model_runner.pin_lora(lora_id)
|
|
|
|
def check_health(self) -> None:
|
|
# worker will always be healthy as long as it's running.
|
|
return
|
|
|
|
def _eplb_before_scale_down(self, old_ep_size: int,
|
|
new_ep_size: int) -> None:
|
|
from vllm.distributed.parallel_state import get_ep_group
|
|
if get_ep_group().rank == 0:
|
|
logger.info("[Elastic EP] Starting expert resharding "
|
|
"before scaling down...")
|
|
rank_mapping = {
|
|
old_ep_rank: old_ep_rank if old_ep_rank < new_ep_size else -1
|
|
for old_ep_rank in range(old_ep_size)
|
|
}
|
|
assert self.model_runner.eplb_state is not None
|
|
self.model_runner.eplb_state.rearrange(self.model_runner.model,
|
|
execute_shuffle=True,
|
|
global_expert_load=None,
|
|
rank_mapping=rank_mapping)
|
|
torch.cuda.synchronize()
|
|
if get_ep_group().rank == 0:
|
|
logger.info("[Elastic EP] Expert resharding completed!")
|
|
|
|
def _eplb_after_scale_up(
|
|
self, old_ep_size: int, new_ep_size: int,
|
|
global_expert_load: Optional[torch.Tensor]) -> None:
|
|
from vllm.distributed.parallel_state import get_ep_group
|
|
if get_ep_group().rank == 0:
|
|
logger.info("[Elastic EP] Starting expert resharding "
|
|
"after scaling up...")
|
|
rank_mapping = {
|
|
old_ep_rank: old_ep_rank
|
|
for old_ep_rank in range(old_ep_size)
|
|
}
|
|
assert self.model_runner.eplb_state is not None
|
|
self.model_runner.eplb_state.rearrange(
|
|
self.model_runner.model,
|
|
execute_shuffle=True,
|
|
global_expert_load=global_expert_load,
|
|
rank_mapping=rank_mapping)
|
|
if get_ep_group().rank == 0:
|
|
logger.info("[Elastic EP] Expert resharding completed!")
|
|
|
|
def _reconfigure_parallel_config(
|
|
self, reconfig_request: ReconfigureDistributedRequest) -> None:
|
|
"""
|
|
Update parallel config with provided reconfig_request
|
|
"""
|
|
parallel_config = self.vllm_config.parallel_config
|
|
parallel_config.data_parallel_size = \
|
|
reconfig_request.new_data_parallel_size
|
|
if reconfig_request.new_data_parallel_rank != \
|
|
ReconfigureRankType.KEEP_CURRENT_RANK:
|
|
parallel_config.data_parallel_rank = \
|
|
reconfig_request.new_data_parallel_rank
|
|
if reconfig_request.new_data_parallel_rank_local != \
|
|
ReconfigureRankType.KEEP_CURRENT_RANK:
|
|
parallel_config.data_parallel_rank_local = \
|
|
reconfig_request.new_data_parallel_rank_local
|
|
parallel_config.data_parallel_master_ip = \
|
|
reconfig_request.new_data_parallel_master_ip
|
|
parallel_config.data_parallel_master_port = \
|
|
reconfig_request.new_data_parallel_master_port
|
|
|
|
def _reconfigure_moe(self, old_ep_size: int,
|
|
new_ep_size: int) -> Optional[torch.Tensor]:
|
|
"""
|
|
Reconfigure MoE modules with provided reconfig_request
|
|
|
|
Return the global expert load if new_ep_size > old_ep_size,
|
|
otherwise None
|
|
"""
|
|
from vllm.distributed.parallel_state import (
|
|
get_dp_group, get_ep_group, prepare_communication_buffer_for_model)
|
|
from vllm.model_executor.layers.fused_moe.layer import (
|
|
FusedMoEParallelConfig)
|
|
|
|
parallel_config = self.vllm_config.parallel_config
|
|
moe_modules = [
|
|
module for module in self.model_runner.model.modules()
|
|
if module.__class__.__name__ == "FusedMoE"
|
|
]
|
|
num_local_experts = moe_modules[0].moe_config.num_local_experts
|
|
assert all(module.moe_config.num_local_experts == num_local_experts
|
|
for module in moe_modules), (
|
|
"All MoE modules must have the same number of experts")
|
|
for module in moe_modules:
|
|
module.moe_config.num_experts = num_local_experts * new_ep_size
|
|
module.global_num_experts = module.moe_config.num_experts
|
|
module.moe_parallel_config = FusedMoEParallelConfig.make(
|
|
tp_size_=get_tp_group().world_size,
|
|
dp_size_=get_dp_group().world_size,
|
|
vllm_parallel_config=parallel_config,
|
|
)
|
|
module.moe_config.moe_parallel_config = module.moe_parallel_config
|
|
if new_ep_size < old_ep_size:
|
|
num_local_physical_experts = num_local_experts
|
|
assert self.model_runner.eplb_state is not None
|
|
new_physical_experts = \
|
|
self.model_runner.eplb_state.physical_to_logical_map.shape[1]
|
|
parallel_config.eplb_config.num_redundant_experts = (
|
|
new_physical_experts -
|
|
self.model_runner.eplb_state.logical_replica_count.shape[1])
|
|
global_expert_load = None
|
|
else:
|
|
num_local_physical_experts = torch.tensor([num_local_experts],
|
|
dtype=torch.int32,
|
|
device="cpu")
|
|
torch.distributed.broadcast(num_local_physical_experts,
|
|
group=get_ep_group().cpu_group,
|
|
group_src=0)
|
|
num_local_physical_experts = num_local_physical_experts.item()
|
|
new_physical_experts = num_local_physical_experts * new_ep_size
|
|
assert self.model_runner.eplb_state is not None
|
|
global_expert_load = self.model_runner.eplb_state.rearrange(
|
|
self.model_runner.model, execute_shuffle=False)
|
|
parallel_config.eplb_config.num_redundant_experts = (
|
|
new_physical_experts - global_expert_load.shape[1])
|
|
prepare_communication_buffer_for_model(self.model_runner.model)
|
|
self.model_runner.model.update_physical_experts_metadata(
|
|
num_physical_experts=new_physical_experts,
|
|
num_local_physical_experts=num_local_physical_experts)
|
|
return global_expert_load
|
|
|
|
def reinitialize_distributed(
|
|
self, reconfig_request: ReconfigureDistributedRequest) -> None:
|
|
from vllm.config import set_current_vllm_config
|
|
from vllm.distributed.parallel_state import (
|
|
cleanup_dist_env_and_memory, get_ep_group)
|
|
|
|
old_ep_size = get_ep_group().world_size
|
|
old_ep_rank = get_ep_group().rank
|
|
new_ep_size = reconfig_request.new_data_parallel_size * get_tp_group(
|
|
).world_size * get_pp_group().world_size
|
|
if new_ep_size < old_ep_size:
|
|
self._eplb_before_scale_down(old_ep_size, new_ep_size)
|
|
|
|
cleanup_dist_env_and_memory()
|
|
|
|
if reconfig_request.new_data_parallel_rank == \
|
|
ReconfigureRankType.SHUTDOWN_CURRENT_RANK:
|
|
assert old_ep_rank >= new_ep_size
|
|
# shutdown
|
|
return
|
|
|
|
self._reconfigure_parallel_config(reconfig_request)
|
|
|
|
with set_current_vllm_config(self.vllm_config):
|
|
init_worker_distributed_environment(self.vllm_config, self.rank,
|
|
self.distributed_init_method,
|
|
self.local_rank)
|
|
|
|
global_expert_load = self._reconfigure_moe(old_ep_size, new_ep_size)
|
|
|
|
if new_ep_size > old_ep_size:
|
|
assert global_expert_load is not None
|
|
self._eplb_after_scale_up(old_ep_size, new_ep_size,
|
|
global_expert_load)
|
|
|
|
def save_sharded_state(
|
|
self,
|
|
path: str,
|
|
pattern: Optional[str] = None,
|
|
max_size: Optional[int] = None,
|
|
) -> None:
|
|
from vllm.model_executor.model_loader import ShardedStateLoader
|
|
ShardedStateLoader.save_model(
|
|
self.model_runner.model,
|
|
path,
|
|
pattern=pattern,
|
|
max_size=max_size,
|
|
)
|
|
|
|
def save_tensorized_model(
|
|
self,
|
|
tensorizer_config: "TensorizerConfig",
|
|
) -> None:
|
|
self.model_runner.save_tensorized_model(
|
|
tensorizer_config=tensorizer_config, )
|
|
|
|
|
|
def init_worker_distributed_environment(
|
|
vllm_config: VllmConfig,
|
|
rank: int,
|
|
distributed_init_method: Optional[str] = None,
|
|
local_rank: int = -1,
|
|
backend: str = "nccl",
|
|
) -> None:
|
|
"""Initialize the distributed environment."""
|
|
parallel_config = vllm_config.parallel_config
|
|
set_custom_all_reduce(not parallel_config.disable_custom_all_reduce)
|
|
|
|
init_distributed_environment(parallel_config.world_size, rank,
|
|
distributed_init_method, local_rank, backend)
|
|
|
|
ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
|
|
parallel_config.pipeline_parallel_size)
|
|
|
|
ensure_kv_transfer_initialized(vllm_config)
|
|
|
|
|
|
def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
|
|
# Check if the GPU supports the dtype.
|
|
if torch_dtype == torch.bfloat16: # noqa: SIM102
|
|
if not current_platform.has_device_capability(80):
|
|
capability = current_platform.get_device_capability()
|
|
gpu_name = current_platform.get_device_name()
|
|
|
|
if capability is None:
|
|
compute_str = "does not have a compute capability"
|
|
else:
|
|
version_str = capability.as_version_str()
|
|
compute_str = f"has compute capability {version_str}"
|
|
|
|
raise ValueError(
|
|
"Bfloat16 is only supported on GPUs with compute capability "
|
|
f"of at least 8.0. Your {gpu_name} GPU {compute_str}. "
|
|
"You can use float16 instead by explicitly setting the "
|
|
"`dtype` flag in CLI, for example: --dtype=half.")
|