Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu> Signed-off-by: Max de Bayser <mbayser@br.ibm.com> Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
480 lines
18 KiB
Python
480 lines
18 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import asyncio
|
|
import time
|
|
from collections.abc import AsyncGenerator, Mapping
|
|
from typing import Any, Optional, Union
|
|
|
|
from fastapi import Request
|
|
|
|
from vllm.config import ModelConfig
|
|
from vllm.engine.protocol import EngineClient
|
|
from vllm.entrypoints.logger import RequestLogger
|
|
from vllm.entrypoints.openai.protocol import (ErrorResponse, RerankDocument,
|
|
RerankRequest, RerankResponse,
|
|
RerankResult, RerankUsage,
|
|
ScoreRequest, ScoreResponse,
|
|
ScoreResponseData, UsageInfo)
|
|
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
|
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
|
# yapf conflicts with isort for this block
|
|
# yapf: disable
|
|
from vllm.entrypoints.score_utils import (ScoreContentPartParam,
|
|
ScoreMultiModalParam,
|
|
_cosine_similarity,
|
|
_validate_score_input_lens,
|
|
compress_token_type_ids,
|
|
get_score_prompt)
|
|
# yapf: enable
|
|
from vllm.entrypoints.utils import _validate_truncation_size
|
|
from vllm.inputs.data import TokensPrompt
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.outputs import PoolingRequestOutput, ScoringRequestOutput
|
|
from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer
|
|
from vllm.utils import make_async, merge_async_iterators
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class ServingScores(OpenAIServing):
|
|
|
|
def __init__(
|
|
self,
|
|
engine_client: EngineClient,
|
|
model_config: ModelConfig,
|
|
models: OpenAIServingModels,
|
|
*,
|
|
request_logger: Optional[RequestLogger],
|
|
log_error_stack: bool = False,
|
|
) -> None:
|
|
super().__init__(engine_client=engine_client,
|
|
model_config=model_config,
|
|
models=models,
|
|
request_logger=request_logger,
|
|
log_error_stack=log_error_stack)
|
|
|
|
async def _embedding_score(
|
|
self,
|
|
tokenizer: AnyTokenizer,
|
|
texts_1: list[str],
|
|
texts_2: list[str],
|
|
request: Union[RerankRequest, ScoreRequest],
|
|
request_id: str,
|
|
tokenization_kwargs: Optional[dict[str, Any]] = None,
|
|
lora_request: Optional[Union[LoRARequest, None]] = None,
|
|
trace_headers: Optional[Mapping[str, str]] = None,
|
|
) -> Union[list[PoolingRequestOutput], ErrorResponse]:
|
|
input_texts = texts_1 + texts_2
|
|
|
|
engine_prompts: list[TokensPrompt] = []
|
|
tokenize_async = make_async(tokenizer.__call__,
|
|
executor=self._tokenizer_executor)
|
|
|
|
tokenization_kwargs = tokenization_kwargs or {}
|
|
tokenized_prompts = await asyncio.gather(
|
|
*(tokenize_async(t, **tokenization_kwargs) for t in input_texts))
|
|
|
|
for tok_result, input_text in zip(tokenized_prompts, input_texts):
|
|
|
|
text_token_prompt = \
|
|
self._validate_input(
|
|
request,
|
|
tok_result["input_ids"],
|
|
input_text)
|
|
|
|
engine_prompts.append(
|
|
TokensPrompt(
|
|
prompt_token_ids=text_token_prompt["prompt_token_ids"]))
|
|
|
|
# Schedule the request and get the result generator.
|
|
generators: list[AsyncGenerator[PoolingRequestOutput, None]] = []
|
|
pooling_params = request.to_pooling_params()
|
|
|
|
try:
|
|
pooling_params.verify("embed", self.model_config)
|
|
except ValueError as e:
|
|
return self.create_error_response(str(e))
|
|
|
|
for i, engine_prompt in enumerate(engine_prompts):
|
|
|
|
request_id_item = f"{request_id}-{i}"
|
|
|
|
self._log_inputs(request_id_item,
|
|
input_texts[i],
|
|
params=pooling_params,
|
|
lora_request=lora_request)
|
|
|
|
generators.append(
|
|
self.engine_client.encode(
|
|
engine_prompt,
|
|
pooling_params,
|
|
request_id_item,
|
|
lora_request=lora_request,
|
|
trace_headers=trace_headers,
|
|
priority=request.priority,
|
|
))
|
|
|
|
result_generator = merge_async_iterators(*generators)
|
|
|
|
# Non-streaming response
|
|
final_res_batch: list[PoolingRequestOutput] = []
|
|
|
|
embeddings: list[Optional[PoolingRequestOutput]] =\
|
|
[None] * len(engine_prompts)
|
|
|
|
async for i, res in result_generator:
|
|
embeddings[i] = res
|
|
|
|
emb_texts_1: list[PoolingRequestOutput] = []
|
|
emb_texts_2: list[PoolingRequestOutput] = []
|
|
|
|
for i in range(0, len(texts_1)):
|
|
assert (emb := embeddings[i]) is not None
|
|
emb_texts_1.append(emb)
|
|
|
|
for i in range(len(texts_1), len(embeddings)):
|
|
assert (emb := embeddings[i]) is not None
|
|
emb_texts_2.append(emb)
|
|
|
|
if len(emb_texts_1) == 1:
|
|
emb_texts_1 = emb_texts_1 * len(emb_texts_2)
|
|
|
|
final_res_batch = _cosine_similarity(tokenizer=tokenizer,
|
|
embed_1=emb_texts_1,
|
|
embed_2=emb_texts_2)
|
|
|
|
return final_res_batch
|
|
|
|
def _preprocess_score(
|
|
self,
|
|
request: Union[RerankRequest, ScoreRequest],
|
|
tokenizer: AnyTokenizer,
|
|
tokenization_kwargs: dict[str, Any],
|
|
data_1: Union[str, ScoreContentPartParam],
|
|
data_2: Union[str, ScoreContentPartParam],
|
|
) -> tuple[str, TokensPrompt]:
|
|
|
|
model_config = self.model_config
|
|
|
|
full_prompt, engine_prompt = get_score_prompt(
|
|
model_config=model_config,
|
|
data_1=data_1,
|
|
data_2=data_2,
|
|
tokenizer=tokenizer,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
)
|
|
self._validate_input(request, engine_prompt["prompt_token_ids"],
|
|
full_prompt)
|
|
if request.mm_processor_kwargs is not None:
|
|
engine_prompt["mm_processor_kwargs"] = request.mm_processor_kwargs
|
|
|
|
return full_prompt, engine_prompt
|
|
|
|
async def _cross_encoding_score(
|
|
self,
|
|
tokenizer: AnyTokenizer,
|
|
data_1: Union[list[str], list[ScoreContentPartParam]],
|
|
data_2: Union[list[str], list[ScoreContentPartParam]],
|
|
request: Union[RerankRequest, ScoreRequest],
|
|
request_id: str,
|
|
tokenization_kwargs: Optional[dict[str, Any]] = None,
|
|
lora_request: Optional[Union[LoRARequest, None]] = None,
|
|
trace_headers: Optional[Mapping[str, str]] = None,
|
|
) -> Union[list[PoolingRequestOutput], ErrorResponse]:
|
|
request_prompts: list[str] = []
|
|
engine_prompts: list[TokensPrompt] = []
|
|
|
|
if len(data_1) == 1:
|
|
data_1 = data_1 * len(data_2)
|
|
|
|
if isinstance(tokenizer, MistralTokenizer):
|
|
raise ValueError(
|
|
"MistralTokenizer not supported for cross-encoding")
|
|
|
|
tokenization_kwargs = tokenization_kwargs or {}
|
|
|
|
input_pairs = [(t1, t2) for t1, t2 in zip(data_1, data_2)]
|
|
|
|
preprocess_async = make_async(self._preprocess_score,
|
|
executor=self._tokenizer_executor)
|
|
|
|
preprocessed_prompts = await asyncio.gather(
|
|
*(preprocess_async(request=request,
|
|
tokenizer=tokenizer,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
data_1=t1,
|
|
data_2=t2) for t1, t2 in input_pairs))
|
|
|
|
for full_prompt, engine_prompt in preprocessed_prompts:
|
|
request_prompts.append(full_prompt)
|
|
engine_prompts.append(engine_prompt)
|
|
|
|
# Schedule the request and get the result generator.
|
|
generators: list[AsyncGenerator[PoolingRequestOutput, None]] = []
|
|
|
|
default_pooling_params = request.to_pooling_params()
|
|
|
|
try:
|
|
default_pooling_params.verify("score", self.model_config)
|
|
except ValueError as e:
|
|
return self.create_error_response(str(e))
|
|
|
|
for i, engine_prompt in enumerate(engine_prompts):
|
|
request_id_item = f"{request_id}-{i}"
|
|
|
|
self._log_inputs(request_id_item,
|
|
request_prompts[i],
|
|
params=default_pooling_params,
|
|
lora_request=lora_request)
|
|
|
|
if (token_type_ids := engine_prompt.pop("token_type_ids", None)):
|
|
pooling_params = default_pooling_params.clone()
|
|
compressed = compress_token_type_ids(token_type_ids)
|
|
pooling_params.extra_kwargs = {
|
|
"compressed_token_type_ids": compressed
|
|
}
|
|
else:
|
|
pooling_params = (default_pooling_params)
|
|
|
|
generator = self.engine_client.encode(
|
|
engine_prompt,
|
|
pooling_params,
|
|
request_id_item,
|
|
lora_request=lora_request,
|
|
trace_headers=trace_headers,
|
|
priority=request.priority,
|
|
)
|
|
|
|
generators.append(generator)
|
|
|
|
result_generator = merge_async_iterators(*generators)
|
|
|
|
# Non-streaming response
|
|
final_res_batch: list[
|
|
Optional[PoolingRequestOutput]] = [None] * len(engine_prompts)
|
|
|
|
async for i, res in result_generator:
|
|
final_res_batch[i] = res
|
|
|
|
return [out for out in final_res_batch if out is not None]
|
|
|
|
async def _run_scoring(
|
|
self,
|
|
data_1: Union[list[str], str, ScoreMultiModalParam],
|
|
data_2: Union[list[str], str, ScoreMultiModalParam],
|
|
request: Union[ScoreRequest, RerankRequest],
|
|
request_id: str,
|
|
raw_request: Optional[Request] = None,
|
|
truncate_prompt_tokens: Optional[int] = None,
|
|
) -> Union[list[PoolingRequestOutput], ErrorResponse]:
|
|
lora_request = self._maybe_get_adapters(request)
|
|
|
|
tokenizer = await self.engine_client.get_tokenizer(lora_request)
|
|
|
|
tokenization_kwargs: dict[str, Any] = {}
|
|
_validate_truncation_size(self.max_model_len, truncate_prompt_tokens,
|
|
tokenization_kwargs)
|
|
|
|
trace_headers = (None if raw_request is None else await
|
|
self._get_trace_headers(raw_request.headers))
|
|
|
|
if not self.model_config.is_multimodal_model and (isinstance(
|
|
data_1, dict) or isinstance(data_2, dict)):
|
|
raise ValueError(
|
|
f"MultiModalParam is not supported for {self.model_config.architecture}" # noqa: E501
|
|
)
|
|
|
|
if isinstance(data_1, str):
|
|
data_1 = [data_1]
|
|
elif isinstance(data_1, dict):
|
|
data_1 = data_1.get("content") # type: ignore[assignment]
|
|
|
|
if isinstance(data_2, str):
|
|
data_2 = [data_2]
|
|
elif isinstance(data_2, dict):
|
|
data_2 = data_2.get("content") # type: ignore[assignment]
|
|
|
|
_validate_score_input_lens(data_1, data_2) # type: ignore[arg-type]
|
|
|
|
if self.model_config.is_cross_encoder:
|
|
return await self._cross_encoding_score(
|
|
tokenizer=tokenizer,
|
|
data_1=data_1, # type: ignore[arg-type]
|
|
data_2=data_2, # type: ignore[arg-type]
|
|
request=request,
|
|
request_id=request_id,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
lora_request=lora_request,
|
|
trace_headers=trace_headers)
|
|
|
|
else:
|
|
return await self._embedding_score(
|
|
tokenizer=tokenizer,
|
|
texts_1=data_1, # type: ignore[arg-type]
|
|
texts_2=data_2, # type: ignore[arg-type]
|
|
request=request,
|
|
request_id=request_id,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
lora_request=lora_request,
|
|
trace_headers=trace_headers)
|
|
|
|
async def create_score(
|
|
self,
|
|
request: ScoreRequest,
|
|
raw_request: Optional[Request] = None,
|
|
) -> Union[ScoreResponse, ErrorResponse]:
|
|
"""
|
|
Score API similar to Sentence Transformers cross encoder
|
|
|
|
See https://sbert.net/docs/package_reference/cross_encoder
|
|
"""
|
|
error_check_ret = await self._check_model(request)
|
|
if error_check_ret is not None:
|
|
return error_check_ret
|
|
|
|
request_id = f"score-{self._base_request_id(raw_request)}"
|
|
created_time = int(time.time())
|
|
|
|
try:
|
|
final_res_batch = await self._run_scoring(
|
|
request.text_1,
|
|
request.text_2,
|
|
request,
|
|
request_id,
|
|
raw_request,
|
|
request.truncate_prompt_tokens,
|
|
)
|
|
if isinstance(final_res_batch, ErrorResponse):
|
|
return final_res_batch
|
|
|
|
return self.request_output_to_score_response(
|
|
final_res_batch,
|
|
request_id,
|
|
created_time,
|
|
self._get_model_name(request.model),
|
|
)
|
|
except asyncio.CancelledError:
|
|
return self.create_error_response("Client disconnected")
|
|
except ValueError as e:
|
|
# TODO: Use a vllm-specific Validation Error
|
|
return self.create_error_response(str(e))
|
|
|
|
async def do_rerank(
|
|
self,
|
|
request: RerankRequest,
|
|
raw_request: Optional[Request] = None
|
|
) -> Union[RerankResponse, ErrorResponse]:
|
|
"""
|
|
Rerank API based on JinaAI's rerank API; implements the same
|
|
API interface. Designed for compatibility with off-the-shelf
|
|
tooling, since this is a common standard for reranking APIs
|
|
|
|
See example client implementations at
|
|
https://github.com/infiniflow/ragflow/blob/main/rag/llm/rerank_model.py
|
|
numerous clients use this standard.
|
|
"""
|
|
error_check_ret = await self._check_model(request)
|
|
if error_check_ret is not None:
|
|
return error_check_ret
|
|
|
|
request_id = f"rerank-{self._base_request_id(raw_request)}"
|
|
documents = request.documents
|
|
top_n = request.top_n if request.top_n > 0 else (
|
|
len(documents)
|
|
if isinstance(documents, list) else len(documents["content"]))
|
|
|
|
try:
|
|
final_res_batch = await self._run_scoring(
|
|
request.query,
|
|
documents,
|
|
request,
|
|
request_id,
|
|
raw_request,
|
|
request.truncate_prompt_tokens,
|
|
)
|
|
if isinstance(final_res_batch, ErrorResponse):
|
|
return final_res_batch
|
|
|
|
return self.request_output_to_rerank_response(
|
|
final_res_batch,
|
|
request_id,
|
|
self._get_model_name(request.model),
|
|
documents,
|
|
top_n,
|
|
)
|
|
except asyncio.CancelledError:
|
|
return self.create_error_response("Client disconnected")
|
|
except ValueError as e:
|
|
# TODO: Use a vllm-specific Validation Error
|
|
return self.create_error_response(str(e))
|
|
|
|
def request_output_to_score_response(
|
|
self,
|
|
final_res_batch: list[PoolingRequestOutput],
|
|
request_id: str,
|
|
created_time: int,
|
|
model_name: str,
|
|
) -> ScoreResponse:
|
|
items: list[ScoreResponseData] = []
|
|
num_prompt_tokens = 0
|
|
|
|
for idx, final_res in enumerate(final_res_batch):
|
|
classify_res = ScoringRequestOutput.from_base(final_res)
|
|
|
|
item = ScoreResponseData(
|
|
index=idx,
|
|
score=classify_res.outputs.score,
|
|
)
|
|
prompt_token_ids = final_res.prompt_token_ids
|
|
|
|
items.append(item)
|
|
num_prompt_tokens += len(prompt_token_ids)
|
|
|
|
usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
total_tokens=num_prompt_tokens,
|
|
)
|
|
|
|
return ScoreResponse(
|
|
id=request_id,
|
|
created=created_time,
|
|
model=model_name,
|
|
data=items,
|
|
usage=usage,
|
|
)
|
|
|
|
def request_output_to_rerank_response(
|
|
self, final_res_batch: list[PoolingRequestOutput], request_id: str,
|
|
model_name: str, documents: Union[list[str], ScoreMultiModalParam],
|
|
top_n: int) -> RerankResponse:
|
|
"""
|
|
Convert the output of do_rank to a RerankResponse
|
|
"""
|
|
results: list[RerankResult] = []
|
|
num_prompt_tokens = 0
|
|
for idx, final_res in enumerate(final_res_batch):
|
|
classify_res = ScoringRequestOutput.from_base(final_res)
|
|
|
|
result = RerankResult(
|
|
index=idx,
|
|
document=RerankDocument(text=documents[idx]) if isinstance(
|
|
documents, list) else RerankDocument(
|
|
multi_modal=documents["content"][idx]),
|
|
relevance_score=classify_res.outputs.score,
|
|
)
|
|
results.append(result)
|
|
prompt_token_ids = final_res.prompt_token_ids
|
|
num_prompt_tokens += len(prompt_token_ids)
|
|
|
|
# sort by relevance, then return the top n if set
|
|
results.sort(key=lambda x: x.relevance_score, reverse=True)
|
|
if top_n < len(documents):
|
|
results = results[:top_n]
|
|
|
|
return RerankResponse(
|
|
id=request_id,
|
|
model=model_name,
|
|
results=results,
|
|
usage=RerankUsage(total_tokens=num_prompt_tokens))
|