Files
vllm-dev/tests/entrypoints/openai/test_rerank.py
Maximilien de Bayser 2554b27baa [V0 Deprecation] Remove pooling model support in V0 (#23434)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-29 00:04:02 -07:00

160 lines
5.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import requests
import torch
import torch.nn.functional as F
from vllm.entrypoints.openai.protocol import RerankResponse
from ...utils import RemoteOpenAIServer
MODEL_NAME = "BAAI/bge-reranker-base"
DTYPE = "bfloat16"
@pytest.fixture(scope="module")
def server():
args = ["--enforce-eager", "--max-model-len", "100", "--dtype", DTYPE]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.mark.parametrize("model_name", [MODEL_NAME])
def test_rerank_texts(server: RemoteOpenAIServer, model_name: str):
query = "What is the capital of France?"
documents = [
"The capital of Brazil is Brasilia.", "The capital of France is Paris."
]
rerank_response = requests.post(server.url_for("rerank"),
json={
"model": model_name,
"query": query,
"documents": documents,
})
rerank_response.raise_for_status()
rerank = RerankResponse.model_validate(rerank_response.json())
assert rerank.id is not None
assert rerank.results is not None
assert len(rerank.results) == 2
assert rerank.results[0].relevance_score >= 0.9
assert rerank.results[1].relevance_score <= 0.01
@pytest.mark.parametrize("model_name", [MODEL_NAME])
def test_top_n(server: RemoteOpenAIServer, model_name: str):
query = "What is the capital of France?"
documents = [
"The capital of Brazil is Brasilia.",
"The capital of France is Paris.", "Cross-encoder models are neat"
]
rerank_response = requests.post(server.url_for("rerank"),
json={
"model": model_name,
"query": query,
"documents": documents,
"top_n": 2
})
rerank_response.raise_for_status()
rerank = RerankResponse.model_validate(rerank_response.json())
assert rerank.id is not None
assert rerank.results is not None
assert len(rerank.results) == 2
assert rerank.results[0].relevance_score >= 0.9
assert rerank.results[1].relevance_score <= 0.01
@pytest.mark.parametrize("model_name", [MODEL_NAME])
def test_rerank_max_model_len(server: RemoteOpenAIServer, model_name: str):
query = "What is the capital of France?" * 100
documents = [
"The capital of Brazil is Brasilia.", "The capital of France is Paris."
]
rerank_response = requests.post(server.url_for("rerank"),
json={
"model": model_name,
"query": query,
"documents": documents
})
assert rerank_response.status_code == 400
# Assert just a small fragments of the response
assert "Please reduce the length of the input." in \
rerank_response.text
def test_invocations(server: RemoteOpenAIServer):
query = "What is the capital of France?"
documents = [
"The capital of Brazil is Brasilia.", "The capital of France is Paris."
]
request_args = {
"model": MODEL_NAME,
"query": query,
"documents": documents,
}
rerank_response = requests.post(server.url_for("rerank"),
json=request_args)
rerank_response.raise_for_status()
invocation_response = requests.post(server.url_for("invocations"),
json=request_args)
invocation_response.raise_for_status()
rerank_output = rerank_response.json()
invocation_output = invocation_response.json()
assert rerank_output.keys() == invocation_output.keys()
for rerank_result, invocations_result in zip(rerank_output["results"],
invocation_output["results"]):
assert rerank_result.keys() == invocations_result.keys()
assert rerank_result["relevance_score"] == pytest.approx(
invocations_result["relevance_score"], rel=0.05)
# TODO: reset this tolerance to 0.01 once we find
# an alternative to flash_attn with bfloat16
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_activation(server: RemoteOpenAIServer, model_name: str):
async def get_outputs(activation):
query = "What is the capital of France?"
documents = [
"The capital of Brazil is Brasilia.",
"The capital of France is Paris."
]
response = requests.post(server.url_for("rerank"),
json={
"model": model_name,
"query": query,
"documents": documents,
"activation": activation
})
outputs = response.json()
return torch.tensor([x['relevance_score'] for x in outputs["results"]])
default = await get_outputs(activation=None)
w_activation = await get_outputs(activation=True)
wo_activation = await get_outputs(activation=False)
assert torch.allclose(default, w_activation,
atol=1e-2), "Default should use activation."
assert not torch.allclose(
w_activation, wo_activation,
atol=1e-2), "wo_activation should not use activation."
assert torch.allclose(
F.sigmoid(wo_activation), w_activation, atol=1e-2
), "w_activation should be close to activation(wo_activation)."