Files
vllm-dev/vllm/v1/attention/backends/mla/triton_mla.py
2025-08-22 02:26:32 +00:00

175 lines
6.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
import torch
from vllm import envs
from vllm.attention.backends.abstract import (AttentionLayer, AttentionType,
is_quantized_kv_cache)
from vllm.attention.ops.triton_decode_attention import decode_attention_fwd
from vllm.attention.ops.triton_flash_attention import triton_attention
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.triton_utils import HAS_TRITON
from vllm.v1.attention.backends.mla.common import (MLACommonBackend,
MLACommonImpl,
MLACommonMetadata)
logger = init_logger(__name__)
class TritonMLABackend(MLACommonBackend):
@staticmethod
def get_name() -> str:
return "TRITON_MLA_VLLM_V1"
@staticmethod
def get_impl_cls() -> type["TritonMLAImpl"]:
return TritonMLAImpl
class TritonMLAImpl(MLACommonImpl[MLACommonMetadata]):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
# MLA Specific Arguments
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **mla_args)
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"TritonMLAImpl does not support one of the following: "
"alibi_slopes, sliding_window, logits_soft_cap")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"TritonMLAImpl")
if is_quantized_kv_cache(self.kv_cache_dtype):
raise NotImplementedError(
"TritonMLA V1 with FP8 KV cache not yet supported")
self.use_triton_flash_attn = envs.VLLM_USE_TRITON_FLASH_ATTN
self.triton_fa_func = triton_attention if HAS_TRITON else None
def _flash_attn_varlen_diff_headdims_rocm(self,
q,
k,
v,
softmax_scale=None,
**kwargs):
assert self.triton_fa_func is not None
# Triton Attention requires a padded V
padded_v = torch.nn.functional.pad(v, [0, q.shape[-1] - v.shape[-1]],
value=0)
# The output of triton_attention is a tuple of
# [output_tensor, encoded_softmax] where encoded_softmax is always None
output_tensor, _ = self.triton_fa_func(
q,
k,
padded_v,
None, # output
kwargs["cu_seqlens_q"],
kwargs["cu_seqlens_k"],
kwargs["max_seqlen_q"],
kwargs["max_seqlen_k"],
kwargs["causal"],
softmax_scale,
None, # bias
)
return output_tensor
def _flash_attn_varlen_diff_headdims(self,
q,
k,
v,
return_softmax_lse=False,
softmax_scale=None,
**kwargs):
if current_platform.is_rocm() \
and self.use_triton_flash_attn \
and not return_softmax_lse:
return self._flash_attn_varlen_diff_headdims_rocm(
q, k, v, softmax_scale=softmax_scale, **kwargs)
else:
return super()._flash_attn_varlen_diff_headdims(
q,
k,
v,
return_softmax_lse=return_softmax_lse,
softmax_scale=softmax_scale,
**kwargs)
def _forward_decode(
self,
q_nope: torch.Tensor,
q_pe: torch.Tensor,
kv_c_and_k_pe_cache: torch.Tensor,
attn_metadata: MLACommonMetadata,
layer: AttentionLayer,
) -> torch.Tensor:
assert kv_c_and_k_pe_cache.numel() > 0
assert attn_metadata.decode is not None
if self.kv_cache_dtype.startswith("fp8"):
raise NotImplementedError("FP8 Triton MLA not yet supported")
B = q_nope.shape[0]
q = torch.cat([q_nope, q_pe], dim=-1)
o = torch.zeros(B,
self.num_heads,
self.kv_lora_rank,
dtype=q.dtype,
device=q.device)
num_kv_splits = 4 # TODO: heuristic
# TODO(lucas) Allocate ahead of time
attn_logits = torch.empty(
(
B,
self.num_heads,
num_kv_splits,
# NOTE(lucas) idk why the +1 is here but sglang has it so we
# just mirror that
self.kv_lora_rank + 1,
),
dtype=torch.float32,
device=q.device,
)
# Add a head dim of 1
kv_c_and_k_pe_cache = kv_c_and_k_pe_cache.unsqueeze(2)
kv_c_cache = kv_c_and_k_pe_cache[..., :self.kv_lora_rank]
PAGE_SIZE = kv_c_and_k_pe_cache.size(1)
# Run MQA
decode_attention_fwd(q, kv_c_and_k_pe_cache, kv_c_cache, o,
attn_metadata.decode.block_table,
attn_metadata.decode.seq_lens, attn_logits,
num_kv_splits, self.scale, PAGE_SIZE)
return self._v_up_proj(o)