Files
vllm-dev/vllm/v1/attention/backends/mla/flashmla.py
2025-08-22 02:26:32 +00:00

198 lines
7.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import ClassVar, Optional
import torch
from vllm.attention.backends.abstract import AttentionLayer, AttentionType
from vllm.attention.ops.flashmla import (flash_mla_with_kvcache,
get_mla_metadata,
is_flashmla_supported)
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.v1.attention.backends.mla.common import (MLACommonBackend,
MLACommonDecodeMetadata,
MLACommonImpl,
MLACommonMetadata,
MLACommonMetadataBuilder)
from vllm.v1.attention.backends.utils import AttentionCGSupport
from vllm.v1.kv_cache_interface import AttentionSpec
logger = init_logger(__name__)
class FlashMLABackend(MLACommonBackend):
@staticmethod
def get_name() -> str:
return "FLASHMLA_VLLM_V1"
@staticmethod
def get_metadata_cls() -> type["FlashMLAMetadata"]:
return FlashMLAMetadata
@staticmethod
def get_builder_cls() -> type["FlashMLAMetadataBuilder"]:
return FlashMLAMetadataBuilder
@staticmethod
def get_impl_cls() -> type["FlashMLAImpl"]:
return FlashMLAImpl
@dataclass
class FlashMLADecodeMetadata(MLACommonDecodeMetadata):
tile_scheduler_metadata: torch.Tensor
num_splits: torch.Tensor
@dataclass
class FlashMLAMetadata(MLACommonMetadata[FlashMLADecodeMetadata]):
pass
class FlashMLAMetadataBuilder(MLACommonMetadataBuilder[FlashMLAMetadata]):
cudagraph_support: ClassVar[AttentionCGSupport] = \
AttentionCGSupport.UNIFORM_BATCH
def __init__(self, kv_cache_spec: AttentionSpec, layer_names: list[str],
vllm_config: VllmConfig, device: torch.device):
super().__init__(kv_cache_spec, layer_names, vllm_config, device,
FlashMLAMetadata)
self.compilation_config = vllm_config.compilation_config
self.num_q_heads = vllm_config.model_config.get_num_attention_heads(
vllm_config.parallel_config)
self.cg_buf_tile_scheduler_metadata = None
self.cg_buf_num_splits = None
device_properties = torch.cuda.get_device_properties(self.device)
num_sms = device_properties.multi_processor_count
if self.compilation_config.cudagraph_mode.has_full_cudagraphs():
self.cg_buf_tile_scheduler_metadata = torch.zeros(
# Upper bound on size (<= #SMs, TileSchedulerMetaDataSize)
# TileSchedulerMetaDataSize = 8
(num_sms, 8),
device=self.device,
dtype=torch.int32,
)
self.cg_buf_num_splits = torch.empty(
(vllm_config.scheduler_config.max_num_seqs + 1),
device=self.device,
dtype=torch.int32)
def _build_decode(self, block_table_tensor: torch.Tensor,
seq_lens: torch.Tensor) -> FlashMLADecodeMetadata:
tile_scheduler_metadata, num_splits = \
get_mla_metadata(
seq_lens,
self.num_q_heads,
1, # MQA for the decode path
)
# TODO: we can disambiguate between decode and mixed-prefill decode here
# so we can only use the persistent buffer if a cudagraph is actually
# being used.
if self.compilation_config.cudagraph_mode.has_full_cudagraphs():
assert self.cg_buf_tile_scheduler_metadata is not None
assert self.cg_buf_num_splits is not None
sm_parts = tile_scheduler_metadata.size(0)
# Metadata per-SM, upper bound on size (<= #SMs, TileMetadataSize)
assert sm_parts <= self.cg_buf_tile_scheduler_metadata.size(0)
tile_scheduler_metadata_view = \
self.cg_buf_tile_scheduler_metadata[:sm_parts]
tile_scheduler_metadata_view.copy_(tile_scheduler_metadata)
tile_scheduler_metadata = tile_scheduler_metadata_view
# Num splits is per-batch, varying size (batch_size,)
n = num_splits.size(0)
# make sure static buffer is large enough
assert n <= self.cg_buf_num_splits.size(0)
num_splits_view = self.cg_buf_num_splits[:n]
num_splits_view.copy_(num_splits)
# Num splits needs to monotonically increasing
# (with: https://github.com/vllm-project/FlashMLA/pull/3, otherwise
# it needs to monotonically increasing by 1)
self.cg_buf_num_splits[n:].fill_(num_splits[-1])
num_splits = num_splits_view
return FlashMLADecodeMetadata(
block_table=block_table_tensor,
seq_lens=seq_lens,
tile_scheduler_metadata=tile_scheduler_metadata,
num_splits=num_splits,
)
class FlashMLAImpl(MLACommonImpl[FlashMLAMetadata]):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
# MLA Specific Arguments
**mla_args) -> None:
super().__init__(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
logits_soft_cap, attn_type,
kv_sharing_target_layer_name, **mla_args)
assert is_flashmla_supported(), \
"FlashMLA is not supported on this device"
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"FlashMLAImpl does not support one of the following: "
"alibi_slopes, sliding_window, logits_soft_cap")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"FlashMLAImpl")
def _forward_decode(
self,
q_nope: torch.Tensor,
q_pe: torch.Tensor,
kv_c_and_k_pe_cache: torch.Tensor,
attn_metadata: FlashMLAMetadata,
layer: AttentionLayer,
) -> torch.Tensor:
assert kv_c_and_k_pe_cache.numel() > 0
assert attn_metadata.decode is not None
q = torch.cat([q_nope, q_pe], dim=-1)\
.unsqueeze(1) # Add seqlen dim of 1 (decode)
o, _ = flash_mla_with_kvcache(
q=q,
k_cache=kv_c_and_k_pe_cache.unsqueeze(-2), # Add head dim of 1
block_table=attn_metadata.decode.block_table,
cache_seqlens=attn_metadata.decode.seq_lens,
head_dim_v=self.kv_lora_rank,
tile_scheduler_metadata=attn_metadata.decode.
tile_scheduler_metadata,
num_splits=attn_metadata.decode.num_splits,
softmax_scale=self.scale,
causal=True,
descale_q=layer._q_scale.reshape(1),
descale_k=layer._k_scale.reshape(1),
)
return self._v_up_proj(o)