Files
vllm-dev/vllm/benchmarks/datasets.py
Breno Baldas Skuk 0cb7b065c3 Feature/benchmark/random mm data/images (#23119)
Signed-off-by: breno.skuk <breno.skuk@hcompany.ai>
2025-08-25 01:28:35 -07:00

2353 lines
89 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This module defines a framework for sampling benchmark requests from various
datasets. Each dataset subclass of BenchmarkDataset must implement sample
generation. Supported dataset types include:
- ShareGPT
- Random (synthetic)
- Sonnet
- BurstGPT
- HuggingFace
- VisionArena
"""
import ast
import base64
import io
import json
import logging
import math
import random
from abc import ABC, abstractmethod
from collections.abc import Iterator, Mapping
from contextlib import suppress
from copy import deepcopy
from dataclasses import dataclass
from functools import cache
from io import BytesIO
from typing import Any, Callable, Optional, Union, cast
import numpy as np
from PIL import Image
from transformers import PreTrainedTokenizerBase
from typing_extensions import deprecated
from vllm.lora.request import LoRARequest
from vllm.lora.utils import get_adapter_absolute_path
from vllm.multimodal import MultiModalDataDict
from vllm.multimodal.image import convert_image_mode
from vllm.transformers_utils.tokenizer import AnyTokenizer, get_lora_tokenizer
from vllm.utils import PlaceholderModule
try:
from datasets import load_dataset
except ImportError:
datasets = PlaceholderModule("datasets")
load_dataset = datasets.placeholder_attr("load_dataset")
try:
import pandas as pd
except ImportError:
pd = PlaceholderModule("pandas")
try:
import librosa
except ImportError:
librosa = PlaceholderModule("librosa")
try:
from vllm.utils import FlexibleArgumentParser
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
logger = logging.getLogger(__name__)
# -----------------------------------------------------------------------------
# Data Classes
# -----------------------------------------------------------------------------
@dataclass
class SampleRequest:
"""
Represents a single inference request for benchmarking.
"""
prompt: Union[str, Any]
prompt_len: int
expected_output_len: int
multi_modal_data: Optional[
Union[MultiModalDataDict, dict, list[dict]]
] = None
lora_request: Optional[LoRARequest] = None
request_id: Optional[str] = None
# -----------------------------------------------------------------------------
# Benchmark Dataset Base Class
# -----------------------------------------------------------------------------
class BenchmarkDataset(ABC):
DEFAULT_SEED = 0
IS_MULTIMODAL = False
def __init__(
self,
dataset_path: Optional[str] = None,
random_seed: int = DEFAULT_SEED,
) -> None:
"""
Initialize the BenchmarkDataset with an optional dataset path and random
seed.
Args:
dataset_path (Optional[str]): Path to the dataset. If None, it
indicates that a default or random dataset might be used.
random_seed (int): Seed value for reproducible shuffling or
sampling. Defaults to DEFAULT_SEED.
"""
self.dataset_path = dataset_path
# Set the random seed, ensuring that a None value is replaced with the
# default seed.
self.random_seed = (random_seed
if random_seed is not None else self.DEFAULT_SEED)
self.data = None
def apply_multimodal_chat_transformation(
self,
prompt: str,
mm_content: Optional[
Union[MultiModalDataDict, dict, list[dict]]
] = None) -> list[dict]:
"""
Transform a prompt and optional multimodal content into a chat format.
This method is used for chat models that expect a specific conversation
format.
"""
content = [{"text": prompt, "type": "text"}]
if mm_content is not None:
if isinstance(mm_content, list):
content.extend(cast(list[dict[str, Any]], mm_content))
elif isinstance(mm_content, dict):
content.append(mm_content)
else:
raise TypeError(
"Could not process multimodal content of type: " +
f"{type(mm_content)}"
)
return [{"role": "user", "content": content}]
def load_data(self) -> None:
"""
Load data from the dataset path into self.data.
This method must be overridden by subclasses since the method to load
data will vary depending on the dataset format and source.
Raises:
NotImplementedError: If a subclass does not implement this method.
"""
# TODO (jenniferzhao): add support for downloading data
raise NotImplementedError(
"load_data must be implemented in subclasses.")
def get_random_lora_request(
self,
tokenizer: PreTrainedTokenizerBase,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
) -> tuple[Optional[LoRARequest], AnyTokenizer]:
"""
Optionally select a random LoRA request and return its associated
tokenizer.
This method is used when LoRA parameters are provided. It randomly
selects a LoRA based on max_loras and retrieves a cached tokenizer for
that LoRA if available. Otherwise, it returns the base tokenizer.
Args:
tokenizer (PreTrainedTokenizerBase): The base tokenizer to use if no
LoRA is selected.
max_loras (Optional[int]): The maximum number of LoRAs available.
If `None`, LoRA is not used.
lora_path (Optional[str]): Path to the LoRA parameters on disk.
If `None`, LoRA is not used.
Returns:
A tuple with the following elements:
- A new [LoRARequest][] (or `None` if not applicable).
- The tokenizer associated with the LoRA request
(or the base tokenizer).
"""
if max_loras is None or lora_path is None:
return None, tokenizer
# Generate a random LoRA ID in the range [1, max_loras].
lora_id = random.randint(1, max_loras)
lora_request = LoRARequest(
lora_name=str(lora_id),
lora_int_id=lora_id,
lora_path=lora_path_on_disk(lora_path),
)
if lora_id not in lora_tokenizer_cache:
lora_tokenizer_cache[lora_id] = get_lora_tokenizer(lora_request)
# Return lora_request and the cached tokenizer if available; otherwise,
# return the base tokenizer
return lora_request, lora_tokenizer_cache[lora_id] or tokenizer
@abstractmethod
def sample(self, tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "") -> list[SampleRequest]:
"""
Abstract method to generate sample requests from the dataset.
Subclasses must override this method to implement dataset-specific logic
for generating a list of SampleRequest objects.
Args:
tokenizer (PreTrainedTokenizerBase): The tokenizer to be used
for processing the dataset's text.
num_requests (int): The number of sample requests to generate.
request_id_prefix (str) The prefix of request_id.
Returns:
list[SampleRequest]: A list of sample requests generated from the
dataset.
"""
raise NotImplementedError("sample must be implemented in subclasses.")
def maybe_oversample_requests(
self,
requests: list[SampleRequest],
num_requests: int,
request_id_prefix: str = "",
) -> None:
"""
Oversamples the list of requests if its size is less than the desired
number.
Args:
requests (List[SampleRequest]): The current list of sampled
requests.
num_requests (int): The target number of requests.
request_id_prefix (str) The prefix of the request ids.
"""
if len(requests) < num_requests:
random.seed(self.random_seed)
additional = deepcopy(
random.choices(requests, k=num_requests - len(requests))
)
for i in range(len(additional)):
req = additional[i]
req.request_id = request_id_prefix + str(len(requests) + i)
requests.extend(additional)
logger.info("Oversampled requests to reach %d total samples.",
num_requests)
# -----------------------------------------------------------------------------
# Utility Functions and Global Caches
# -----------------------------------------------------------------------------
def is_valid_sequence(
prompt_len: int,
output_len: int,
min_len: int = 4,
max_prompt_len: int = 1024,
max_total_len: int = 2048,
skip_min_output_len_check: bool = False,
) -> bool:
"""
Validate a sequence based on prompt and output lengths.
Default pruning criteria are copied from the original `sample_hf_requests`
and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
from `sample_requests` in benchmark_throughput.py.
"""
# Check for invalid conditions
prompt_too_short = prompt_len < min_len
output_too_short = (not skip_min_output_len_check) and (output_len
< min_len)
prompt_too_long = prompt_len > max_prompt_len
combined_too_long = (prompt_len + output_len) > max_total_len
# Return True if none of the invalid conditions are met
return not (prompt_too_short or output_too_short or prompt_too_long
or combined_too_long)
@cache
def lora_path_on_disk(lora_path: str) -> str:
return get_adapter_absolute_path(lora_path)
# Global cache for LoRA tokenizers.
lora_tokenizer_cache: dict[int, AnyTokenizer] = {}
def process_image(image: Any) -> Mapping[str, Any]:
"""
Process a single image input and return a multimedia content dictionary.
Supports the following input types:
1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
containing raw image data. - Loads the bytes as a PIL.Image.Image.
2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as
a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns
a dictionary with the image as a base64 data URL.
3. String input: - Treats the string as a URL or local file path. -
Prepends "file://" if the string doesn't start with "http://" or
"file://". - Returns a dictionary with the image URL.
Raises:
ValueError: If the input is not a supported type.
"""
if isinstance(image, dict) and 'bytes' in image:
image = Image.open(BytesIO(image['bytes']))
if isinstance(image, Image.Image):
image = convert_image_mode(image, "RGB")
with io.BytesIO() as image_data:
image.save(image_data, format="JPEG")
image_base64 = base64.b64encode(
image_data.getvalue()).decode("utf-8")
return {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
}
if isinstance(image, str):
image_url = (image if image.startswith(
("http://", "file://")) else f"file://{image}")
return {"type": "image_url", "image_url": {"url": image_url}}
raise ValueError(f"Invalid image input {image}. Must be a PIL.Image.Image"
" or str or dictionary with raw image bytes.")
def process_video(video: Any) -> Mapping[str, Any]:
"""
Process a single video input and return a multimedia content dictionary.
Supports the following input types:
1. Dictionary with raw video bytes: - Expects a dict with a 'bytes' key
containing raw video data.
2. String input: - Treats the string as a URL or local file path. -
Prepends "file://" if the string doesn't start with "http://" or
"file://". - Returns a dictionary with the image URL.
Raises:
ValueError: If the input is not a supported type.
"""
if isinstance(video, dict) and 'bytes' in video:
video_bytes = video['bytes']
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
return {
"type": "video_url",
"video_url": {
"url": f"data:video/mp4;base64,{video_base64}"
},
}
if isinstance(video, str):
video_url = (video if video.startswith(
("http://", "file://")) else f"file://{video}")
return {"type": "video_url", "video_url": {"url": video_url}}
raise ValueError(
f"Invalid video input {video}. Must be a string of local path/remote url, or a dictionary with raw video bytes in the form of `{{'bytes': raw_video_bytes}}`." # noqa: E501
)
# -----------------------------------------------------------------------------
# Random Dataset Implementation (Synthetic Data)
# -----------------------------------------------------------------------------
class RandomDataset(BenchmarkDataset):
"""
Synthetic text-only dataset for serving/throughput benchmarks.
Strategy:
- Sample input/output token lengths per request from integer-uniform ranges
around configured means (controlled by range_ratio).
- Prepend a fixed random prefix of length prefix_len.
- Generate the remaining tokens as a reproducible sequence:
(offset + index + arange(input_len)) % vocab_size.
- Decode then re-encode/truncate to ensure prompt token counts match.
- Uses numpy.default_rng seeded with random_seed for reproducible sampling.
"""
# Default values copied from benchmark_serving.py for the random dataset.
DEFAULT_PREFIX_LEN = 0
DEFAULT_RANGE_RATIO = 0.0
DEFAULT_INPUT_LEN = 1024
DEFAULT_OUTPUT_LEN = 128
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
# Use numpy's default_rng for deterministic sampling
# Do not use random.seed() or np.random.seed() elsewhere in this class.
# This ensures that the RNG is isolated from global RNG state.
self._rng = np.random.default_rng(self.random_seed)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "",
prefix_len: int = DEFAULT_PREFIX_LEN,
range_ratio: float = DEFAULT_RANGE_RATIO,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
**kwargs,
) -> list[SampleRequest]:
input_lens, output_lens, offsets = self.get_sampling_params(
num_requests, range_ratio, input_len, output_len, tokenizer
)
# Generate prefix once
prefix_token_ids = self.get_prefix(tokenizer, prefix_len)
vocab_size = tokenizer.vocab_size
requests = []
for i in range(num_requests):
prompt, total_input_len = self.generate_token_sequence(
tokenizer=tokenizer,
prefix_token_ids=prefix_token_ids,
prefix_len=prefix_len,
vocab_size=vocab_size,
input_len=int(input_lens[i]),
offset=int(offsets[i]),
index=i,
)
requests.append(
SampleRequest(
prompt=prompt,
prompt_len=total_input_len,
expected_output_len=int(output_lens[i]),
request_id=request_id_prefix + str(i),
)
)
return requests
def get_prefix(
self, tokenizer: PreTrainedTokenizerBase, prefix_len: int
) -> list[int]:
"""
Get the prefix for the dataset.
"""
return (
self._rng.integers(
0, tokenizer.vocab_size, size=prefix_len).tolist()
if prefix_len > 0
else []
)
def get_sampling_params(
self,
num_requests: int,
range_ratio: float,
input_len: int,
output_len: int,
tokenizer: PreTrainedTokenizerBase,
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Get the sampling parameters for the dataset.
"""
# Enforce range_ratio < 1
if not (0.0 <= range_ratio < 1.0):
raise ValueError("range_ratio must be in [0, 1).")
num_special_tokens = int(tokenizer.num_special_tokens_to_add())
real_input_len = max(0, int(input_len) - num_special_tokens)
# Bounds use floor for low and ceil for high
input_low = math.floor(real_input_len * (1 - range_ratio))
input_high = math.ceil(real_input_len * (1 + range_ratio))
output_low = math.floor(output_len * (1 - range_ratio))
output_high = math.ceil(output_len * (1 + range_ratio))
# Ensure the lower bound for output length is at least 1 to
# prevent sampling 0 tokens.
output_low = max(output_low, 1)
if input_low > input_high:
raise ValueError(
"Invalid input sampling interval: "
f"low={input_low} > high={input_high}"
)
if output_low > output_high:
raise ValueError(
"Invalid output sampling interval: "
f"low={output_low} > high={output_high}"
)
logger.info(
"Sampling input_len from [%s, %s] and output_len from [%s, %s]",
input_low,
input_high,
output_low,
output_high,
)
input_lens = self._rng.integers(input_low, input_high + 1,
size=num_requests)
output_lens = self._rng.integers(output_low, output_high + 1,
size=num_requests)
offsets = self._rng.integers(0, tokenizer.vocab_size,
size=num_requests)
return input_lens, output_lens, offsets
def generate_token_sequence(
self,
*,
tokenizer: PreTrainedTokenizerBase,
prefix_token_ids: list[int],
prefix_len: int,
vocab_size: int,
input_len: int,
offset: int,
index: int,
) -> tuple[str, int]:
"""
Returns (prompt, total_input_len).
NOTE: After decoding the prompt we have to encode and decode it again.
This is done because in some cases N consecutive tokens
give a string tokenized into != N number of tokens.
For example for GPT2Tokenizer:
[6880, 6881] -> ['Ġcalls', 'here'] ->
[1650, 939, 486] -> ['Ġcall', 'sh', 'ere']
To avoid uncontrolled change of the prompt length,
the encoded sequence is truncated before being decode again.
"""
# Build the inner sequence by sampling sequentially from the vocab
inner_seq = ((offset + index + np.arange(input_len))
% vocab_size).tolist()
token_sequence = prefix_token_ids + inner_seq
# Decode, then re-encode and truncate to preserve token count invariants
prompt = tokenizer.decode(token_sequence)
total_input_len = prefix_len + int(input_len)
re_encoded_sequence = tokenizer.encode(
prompt, add_special_tokens=False)[:total_input_len]
prompt = tokenizer.decode(re_encoded_sequence)
total_input_len = len(re_encoded_sequence)
return prompt, total_input_len
# -----------------------------------------------------------------------------
# MultiModalDataset Implementation
# -----------------------------------------------------------------------------
class RandomMultiModalDataset(RandomDataset):
"""
Synthetic multimodal dataset (text + images) that extends RandomDataset.
Status:
- Images: supported via synthetic RGB data.
- Video: not yet supported (TODO: implement video generation method).
- Audio: not yet supported.
Sampling overview:
1) Number of items per request is sampled uniformly from the integer range
[floor(n·(1r)), ceil(n·(1+r))], where n is the base count and r is
`num_mm_items_range_ratio` in [0, 1]. r=0 keeps it fixed; r=1 allows 0.
The maximum is further clamped to the sum of per-modality limits.
2) Each items modality and shape is sampled from `bucket_config`, a dict
mapping (height, width, num_frames) → probability. We treat
`num_frames`=1 as image and and `num_frames` > 1 as video.
Entries with zero probability are removed and the rest are renormalized
to sum to 1.
3) Per-modality hard caps are enforced via `limit_mm_per_prompt`.
When a modality reaches its cap, all of its buckets are excluded and the
remaining probabilities are renormalized.
Example bucket configuration:
{(256, 256, 1): 0.5, (720, 1280, 1): 0.4, (720, 1280, 16): 0.1}
- Two image buckets (`num_frames`=1) and one video bucket
(`num_frames`=16).
OBS.: Only image sampling is supported for now.
"""
IS_MULTIMODAL = True
# NOTE: video sampling is WIP. Setting it to 0.
DEFAULT_LIMIT_MM_PER_PROMPT = {"image": 255, "video": 0}
DEFAULT_BASE_ITEMS_PER_REQUEST = 1
DEFAULT_NUM_MM_ITEMS_RANGE_RATIO = 0.0
DEFAULT_MM_ITEM_BUCKET_CONFIG = {
(256, 256, 1): 0.5,
(720, 1280, 1): 0.5,
(720, 1280, 16): 0.0,
}
DEFAULT_ENABLE_MULTIMODAL_CHAT = False
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
def generate_synthetic_image(self, width: int, height: int) -> Image.Image:
"""Generate synthetic PIL image with random RGB values.
NOTE: iid pixel sampling results in worst-case compression
(good for stressing I/O), but very unlike real photos.
We could consider a “low-freq” mode (e.g., noise blur)
to emulate network realism instead of max stress.
"""
random_pixels = self._rng.integers(
0,
256,
(height, width, 3),
dtype=np.uint8,
)
return Image.fromarray(random_pixels)
def generate_synthetic_video(self, width: int,
height: int,
num_frames: int) -> Any:
"""Generate synthetic video with random values.
TODO: Finish this method.
"""
raise NotImplementedError("Video sampling is WIP.")
def map_config_to_modality(self, config: tuple[int, int, int]) -> str:
"""Map the configuration to the modality."""
if config[-1] == 1:
return "image"
elif config[-1] > 1:
return "video"
else:
raise ValueError(f"Invalid multimodal item configuration: {config}")
def normalize_bucket_config(self, bucket_config: dict[tuple[int, int, int],
float]) -> dict[tuple[int, int, int], float]:
"""
Remove zero probability entries
and normalize the bucket config to sum to 1.
"""
# Raise error if value is negative
if any(v < 0 for v in bucket_config.values()):
raise ValueError("Bucket config values must be non-negative.")
# Remove zero probability entries
bucket_config = {k: v for k, v in bucket_config.items() if v > 0}
# if bucket config is empty, raise error
if not bucket_config:
raise ValueError("Got invalid bucket config. "
"Bucket config values must be non-zero.")
# Normalize the remaining bucket config to sum to 1
total = sum(bucket_config.values())
return {k: v / total for k, v in bucket_config.items()}
def generate_mm_item(self,
mm_item_config: tuple[int, int, int],
) -> Mapping[str, Any]:
"""
Create synthetic images and videos and
apply process_image/process_video respectively.
This follows the OpenAI API chat completions
https://github.com/openai/openai-python
"""
if self.map_config_to_modality(mm_item_config) == "image":
return process_image(self.generate_synthetic_image(
mm_item_config[1],
mm_item_config[0]))
elif self.map_config_to_modality(mm_item_config) == "video":
return process_video(self.generate_synthetic_video(
mm_item_config[1],
mm_item_config[0],
mm_item_config[2]))
else:
raise ValueError(f"Invalid multimodal item configuration: "
f"{mm_item_config}")
def get_mm_item_sampling_params(
self,
base_items_per_request: int,
num_mm_items_range_ratio: float,
limit_mm_per_prompt: dict[str, int],
bucket_config: dict[tuple[int, int, int], float],
) -> tuple[int, int, dict[str, int], dict[tuple[int, int, int], float]]:
"""
Get the sampling parameters for the multimodal items.
"""
# Enforce num_mm_items_range_ratio <= 1
if not (0.0 <= num_mm_items_range_ratio <= 1.0):
raise ValueError("num_mm_items_range_ratio must be in [0, 1].")
# Ensure modalities to sample are in limit_mm_per_prompt
for k, v in bucket_config.items():
# get modality from bucket config
modality = self.map_config_to_modality(k)
if modality not in limit_mm_per_prompt:
raise ValueError(f"Modality {modality} is not in "
f"limit_mm_per_prompt: "
f"{limit_mm_per_prompt.keys()}")
# Remove zero probability entries
# and normalize bucket config to sum to 1
bucket_config = self.normalize_bucket_config(bucket_config)
logger.info(
"Normalized bucket config: %s", bucket_config,
)
# Only consider limit per prompt for modalities in bucket config
allowed_modalities = {self.map_config_to_modality(cfg)
for cfg in bucket_config}
limit_mm_per_prompt = {
k: v for k, v in limit_mm_per_prompt.items()
if k in allowed_modalities}
if not limit_mm_per_prompt:
raise ValueError("No valid limits for modalities present in "
"bucket_config.")
logger.info(
"Updated mm-limit-per-prompt: %s", limit_mm_per_prompt,
)
# Get max and min num mm items and ensure
# it is at most the sum of limit_mm_per_prompt for all modalities
max_num_mm_items = min(
sum(limit_mm_per_prompt.values()),
math.ceil(base_items_per_request * (1 + num_mm_items_range_ratio))
)
# Ensure min num mm items is at least 0
min_num_mm_items = max(
0,
math.floor(base_items_per_request * (1 - num_mm_items_range_ratio))
)
# Raise error if min num mm items is greater than max num mm items
if min_num_mm_items > max_num_mm_items:
raise ValueError(f"Min num mm items is greater than max mm items: "
f"{min_num_mm_items} > {max_num_mm_items}")
logger.info(
"Sampling number of multimodal items from [%s, %s]",
min_num_mm_items, max_num_mm_items,
)
return (
min_num_mm_items,
max_num_mm_items,
limit_mm_per_prompt,
bucket_config,
)
def get_mm_item_iterator(
self,
min_num_mm_items: int,
max_num_mm_items: int,
bucket_config: dict[tuple[int, int, int], float],
limit_mm_per_prompt: dict[str, int],
) -> Iterator[tuple[int,int, int]]:
"""
Iterator over the multimodal items for each request
whose size is between min_num_mm_items and max_num_mm_items.
Loop over the bucket config and sample a multimodal item.
Loop until the number of multimodal items sampled is equal to
request_num_mm_items or limit of multimodal items per prompt
for all modalities is reached.
Note:
- This function operates on a per-request shallow copy of
`bucket_config` (tuple->float). The original dict passed to
`sample` is not mutated. If this ever changes, a test
is implemented and will fail.
"""
# Get the number of multimodal items to sample
request_num_mm_items = int(
self._rng.integers(min_num_mm_items, max_num_mm_items + 1)
)
# If request_num_mm_items is 0, yield an empty iterator
if request_num_mm_items == 0:
return
# Initialize modality counters
modality_counter = {self.map_config_to_modality(k): 0
for k in bucket_config}
# Copy the bucket config to avoid modifying the original
bucket_config_copy = bucket_config.copy()
# Loop over the number of multimodal items to sample
while sum(modality_counter.values()) < request_num_mm_items:
# Sample a multimodal item config
mm_item_config = self._rng.choice(list(bucket_config_copy.keys()),
p=list(bucket_config_copy.values()))
modality = self.map_config_to_modality(mm_item_config)
# Check that modality count is less than limit per prompt
if modality_counter[modality] < limit_mm_per_prompt[modality]:
modality_counter[modality] += 1
yield (
mm_item_config
)
else:
# If the counter is greater than the limit per prompt
# set all multimodal items of this modality to 0
for k, v in bucket_config_copy.items():
if self.map_config_to_modality(k) == modality:
bucket_config_copy[k] = 0
# If all configs are 0, break the loop
# This should not happen as request_num_mm_items is at most
# the sum of limit_mm_per_prompt for all modalities
if all(v == 0 for v in bucket_config_copy.values()):
logger.warning("Exhausted all multimodal items "
"of modality %s",
modality)
break
# Renormalize the bucket config
bucket_config_copy = self.normalize_bucket_config(
bucket_config_copy)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
request_id_prefix: str = "",
prefix_len: int = RandomDataset.DEFAULT_PREFIX_LEN,
range_ratio: float = RandomDataset.DEFAULT_RANGE_RATIO,
input_len: int = RandomDataset.DEFAULT_INPUT_LEN,
output_len: int = RandomDataset.DEFAULT_OUTPUT_LEN,
limit_mm_per_prompt: dict[str, int] = DEFAULT_LIMIT_MM_PER_PROMPT,
base_items_per_request: int = DEFAULT_BASE_ITEMS_PER_REQUEST,
num_mm_items_range_ratio: float = DEFAULT_NUM_MM_ITEMS_RANGE_RATIO,
bucket_config: dict[tuple[int, int, int], float] =
DEFAULT_MM_ITEM_BUCKET_CONFIG,
enable_multimodal_chat: bool = DEFAULT_ENABLE_MULTIMODAL_CHAT,
**kwargs,
) -> list[SampleRequest]:
# NOTE: Video sampling is WIP. Raise error if video is in bucket config
# and probability is non-zero.
if any(self.map_config_to_modality(cfg) == "video" and p > 0
for cfg, p in bucket_config.items()):
raise NotImplementedError("Video sampling not implemented; "
"set its probability to 0.")
# Get the sampling parameters for the dataset
input_lens, output_lens, offsets = self.get_sampling_params(
num_requests, range_ratio, input_len, output_len, tokenizer
)
(
min_num_mm_items,
max_num_mm_items,
limit_mm_per_prompt,
bucket_config,
) = self.get_mm_item_sampling_params(
base_items_per_request,
num_mm_items_range_ratio,
limit_mm_per_prompt,
bucket_config,
)
# Generate prefix once
prefix_token_ids = self.get_prefix(tokenizer, prefix_len)
vocab_size = tokenizer.vocab_size
# Add synthetic multimodal items to each request
mm_requests = []
for i in range(num_requests):
prompt, total_input_len = self.generate_token_sequence(
tokenizer=tokenizer,
prefix_token_ids=prefix_token_ids,
prefix_len=prefix_len,
vocab_size=vocab_size,
input_len=int(input_lens[i]),
offset=int(offsets[i]),
index=i,
)
# Get multimodal item iterator for a given request
mm_item_iterator = self.get_mm_item_iterator(
min_num_mm_items,
max_num_mm_items,
bucket_config,
limit_mm_per_prompt,
)
mm_content = cast(list[dict[str, Any]], [
self.generate_mm_item(mm_item_config)
for mm_item_config in mm_item_iterator
])
if enable_multimodal_chat:
# NOTE: For now this option is only provided for completeness
# given that the serve.py benchmark currently does not use it.
mm_chat_prompt: Any = prompt
mm_chat_prompt = self.apply_multimodal_chat_transformation(
prompt, mm_content)
sample_request = SampleRequest(
prompt=mm_chat_prompt,
prompt_len=total_input_len,
expected_output_len=int(output_lens[i]),
multi_modal_data=None,
request_id=request_id_prefix + str(i),
)
else:
sample_request = SampleRequest(
prompt=prompt,
prompt_len=total_input_len,
expected_output_len=int(output_lens[i]),
multi_modal_data=mm_content,
request_id=request_id_prefix + str(i),
)
mm_requests.append(sample_request)
return mm_requests
# -----------------------------------------------------------------------------
# ShareGPT Dataset Implementation
# -----------------------------------------------------------------------------
class ShareGPTDataset(BenchmarkDataset):
"""
Implements the ShareGPT dataset. Loads data from a JSON file and generates
sample requests based on conversation turns.
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self) -> None:
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
with open(self.dataset_path, encoding="utf-8") as f:
self.data = json.load(f)
# Filter entries with at least two conversation turns.
self.data = [
entry for entry in self.data
if "conversations" in entry and len(entry["conversations"]) >= 2
]
random.seed(self.random_seed)
random.shuffle(self.data)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
samples: list = []
ind = 0
for entry in self.data:
if len(samples) >= num_requests:
break
prompt, completion = (
entry["conversations"][0]["value"],
entry["conversations"][1]["value"],
)
lora_request, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
new_output_len = (len(completion_ids)
if output_len is None else output_len)
if not is_valid_sequence(prompt_len,
new_output_len,
skip_min_output_len_check=output_len
is not None):
continue
if image_path := entry.get("image"):
mm_content = process_image(image_path)
elif video_path := entry.get("video"):
mm_content = process_video(video_path)
else:
mm_content = None
if enable_multimodal_chat:
prompt = self.apply_multimodal_chat_transformation(
prompt, mm_content)
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=new_output_len,
lora_request=lora_request,
multi_modal_data=mm_content,
request_id=request_id_prefix + str(ind),
))
ind += 1
self.maybe_oversample_requests(samples, num_requests, request_id_prefix)
return samples
def add_dataset_parser(parser: FlexibleArgumentParser):
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
"--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.",
)
parser.add_argument(
"--dataset-name",
type=str,
default="random",
choices=[
"sharegpt", "burstgpt", "sonnet", "random", "random-mm", "hf",
"custom", "prefix_repetition"
],
help="Name of the dataset to benchmark on.",
)
parser.add_argument(
"--no-stream",
action="store_true",
help="Do not load the dataset in streaming mode.",
)
parser.add_argument(
"--dataset-path",
type=str,
default=None,
help="Path to the sharegpt/sonnet dataset. "
"Or the huggingface dataset ID if using HF dataset.",
)
# group for dataset specific arguments
custom_group = parser.add_argument_group("custom dataset options")
custom_group.add_argument(
"--custom-output-len",
type=int,
default=256,
help=
"Number of output tokens per request, used only for custom dataset.",
)
custom_group.add_argument(
"--custom-skip-chat-template",
action="store_true",
help=
"Skip applying chat template to prompt, used only for custom dataset.",
)
sonnet_group = parser.add_argument_group("sonnet dataset options")
sonnet_group.add_argument(
"--sonnet-input-len",
type=int,
default=550,
help=
"Number of input tokens per request, used only for sonnet dataset.",
)
sonnet_group.add_argument(
"--sonnet-output-len",
type=int,
default=150,
help=
"Number of output tokens per request, used only for sonnet dataset.",
)
sonnet_group.add_argument(
"--sonnet-prefix-len",
type=int,
default=200,
help=
"Number of prefix tokens per request, used only for sonnet dataset.",
)
sharegpt_group = parser.add_argument_group("sharegpt dataset options")
sharegpt_group.add_argument(
"--sharegpt-output-len",
type=int,
default=None,
help="Output length for each request. Overrides the output length "
"from the ShareGPT dataset.",
)
random_group = parser.add_argument_group("random dataset options")
random_group.add_argument(
"--random-input-len",
type=int,
default=1024,
help=
"Number of input tokens per request, used only for random sampling.",
)
random_group.add_argument(
"--random-output-len",
type=int,
default=128,
help=
"Number of output tokens per request, used only for random sampling.",
)
random_group.add_argument(
"--random-range-ratio",
type=float,
default=0.0,
help="Range ratio for sampling input/output length, "
"used only for random sampling. Must be in the range [0, 1) to define "
"a symmetric sampling range"
"[length * (1 - range_ratio), length * (1 + range_ratio)].",
)
random_group.add_argument(
"--random-prefix-len",
type=int,
default=0,
help=("Number of fixed prefix tokens before the random context "
"in a request. "
"The total input length is the sum of `random-prefix-len` and "
"a random "
"context length sampled from [input_len * (1 - range_ratio), "
"input_len * (1 + range_ratio)]."),
)
# random multimodal dataset options
random_mm_group = parser.add_argument_group(
"random multimodal dataset options extended from random dataset")
random_mm_group.add_argument(
"--random-mm-base-items-per-request",
type=int,
default=RandomMultiModalDataset.DEFAULT_BASE_ITEMS_PER_REQUEST,
help=(
"Base number of multimodal items per request for random-mm. "
"Actual per-request count is sampled around this base using "
"--random-mm-num-mm-items-range-ratio."
),
)
random_mm_group.add_argument(
"--random-mm-num-mm-items-range-ratio",
type=float,
default=RandomMultiModalDataset.DEFAULT_NUM_MM_ITEMS_RANGE_RATIO,
help=(
"Range ratio r in [0, 1] for sampling items per request. "
"We sample uniformly from the closed integer range "
"[floor(n*(1-r)), ceil(n*(1+r))] "
"where n is the base items per request. "
"r=0 keeps it fixed; r=1 allows 0 items. The maximum is clamped "
"to the sum of per-modality limits from "
"--random-mm-limit-mm-per-prompt. "
"An error is raised if the computed min exceeds the max."
),
)
random_mm_group.add_argument(
"--random-mm-limit-mm-per-prompt",
type=json.loads,
default=RandomMultiModalDataset.DEFAULT_LIMIT_MM_PER_PROMPT,
help=(
"Per-modality hard caps for items attached per request, e.g. "
"'{\"image\": 3, \"video\": 0}'. The sampled per-request item "
"count is clamped to the sum of these limits. When a modality "
"reaches its cap, its buckets are excluded and probabilities are "
"renormalized."
"OBS.: Only image sampling is supported for now."
),
)
def _parse_mm_bucket_config(v: object) -> dict[tuple[int, int, int], float]:
# If already a dict (e.g., programmatic call), normalize keys
def normalize(d: dict) -> dict[tuple[int, int, int], float]:
out: dict[tuple[int, int, int], float] = {}
for k, val in d.items():
key = k
if isinstance(key, str):
with suppress(Exception):
key = ast.literal_eval(key)
if not (isinstance(key, tuple) and len(key) == 3
and all(isinstance(x, int) for x in key)):
raise ValueError(
f"Invalid bucket key {k!r}. Expected tuple (H, W, T)."
)
out[(int(key[0]), int(key[1]), int(key[2]))] = float(val)
return out
if isinstance(v, dict):
return normalize(v)
if isinstance(v, str):
# Python literal (supports tuple keys)
parsed = ast.literal_eval(v)
if not isinstance(parsed, dict):
raise ValueError("Bucket config must parse to a dict.")
return normalize(parsed)
raise ValueError("Unsupported value for --random-mm-bucket-config.")
random_mm_group.add_argument(
"--random-mm-bucket-config",
type=_parse_mm_bucket_config,
default=RandomMultiModalDataset.DEFAULT_MM_ITEM_BUCKET_CONFIG,
help=(
"The bucket config is a dictionary mapping a multimodal item"
"sampling configuration to a probability."
"Currently allows for 2 modalities: images and videos. "
"An bucket key is a tuple of (height, width, num_frames)"
"The value is the probability of sampling that specific item. "
"Example: "
"--random-mm-bucket-config "
"{(256, 256, 1): 0.5, (720, 1280, 1): 0.4, (720, 1280, 16): 0.10} "
"First item: images with resolution 256x256 w.p. 0.5"
"Second item: images with resolution 720x1280 w.p. 0.4 "
"Third item: videos with resolution 720x1280 and 16 frames w.p. 0.1"
"OBS.: If the probabilities do not sum to 1, they are normalized."
"OBS bis.: Only image sampling is supported for now."
),
)
hf_group = parser.add_argument_group("hf dataset options")
hf_group.add_argument("--hf-subset",
type=str,
default=None,
help="Subset of the HF dataset.")
hf_group.add_argument("--hf-split",
type=str,
default=None,
help="Split of the HF dataset.")
hf_group.add_argument(
"--hf-output-len",
type=int,
default=None,
help="Output length for each request. Overrides the output lengths "
"from the sampled HF dataset.",
)
prefix_repetition_group = parser.add_argument_group(
"prefix repetition dataset options")
prefix_repetition_group.add_argument(
"--prefix-repetition-prefix-len",
type=int,
default=256,
help="Number of prefix tokens per request, used only for prefix "
"repetition dataset.",
)
prefix_repetition_group.add_argument(
"--prefix-repetition-suffix-len",
type=int,
default=256,
help="Number of suffix tokens per request, used only for prefix "
"repetition dataset. Total input length is prefix_len + suffix_len.",
)
prefix_repetition_group.add_argument(
"--prefix-repetition-num-prefixes",
type=int,
default=10,
help="Number of prefixes to generate, used only for prefix repetition "
"dataset. Prompts per prefix is num_requests // num_prefixes.",
)
prefix_repetition_group.add_argument(
"--prefix-repetition-output-len",
type=int,
default=128,
help="Number of output tokens per request, used only for prefix "
"repetition dataset.",
)
def get_samples(args, tokenizer) -> list[SampleRequest]:
if args.dataset_name == "custom":
dataset = CustomDataset(dataset_path=args.dataset_path)
input_requests = dataset.sample(
num_requests=args.num_prompts,
tokenizer=tokenizer,
output_len=args.custom_output_len,
skip_chat_template=args.custom_skip_chat_template,
request_id_prefix=args.request_id_prefix,
)
elif args.dataset_name == "sonnet":
dataset = SonnetDataset(dataset_path=args.dataset_path)
# For the "sonnet" dataset, formatting depends on the backend.
if args.endpoint_type == "openai-chat":
input_requests = dataset.sample(
num_requests=args.num_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
return_prompt_formatted=False,
request_id_prefix=args.request_id_prefix,
)
else:
assert tokenizer.chat_template or tokenizer.default_chat_template, (
"Tokenizer/model must have chat template for sonnet dataset.")
input_requests = dataset.sample(
num_requests=args.num_prompts,
input_len=args.sonnet_input_len,
output_len=args.sonnet_output_len,
prefix_len=args.sonnet_prefix_len,
tokenizer=tokenizer,
return_prompt_formatted=True,
request_id_prefix=args.request_id_prefix,
)
elif args.dataset_name == "hf":
# all following datasets are implemented from the
# HuggingFaceDataset base class
if args.dataset_path in VisionArenaDataset.SUPPORTED_DATASET_PATHS:
dataset_class = VisionArenaDataset
args.hf_split = "train"
args.hf_subset = None
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_class = InstructCoderDataset
args.hf_split = "train"
elif args.dataset_path in MTBenchDataset.SUPPORTED_DATASET_PATHS:
dataset_class = MTBenchDataset
args.hf_split = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_class = ConversationDataset
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS:
dataset_class = AIMODataset
args.hf_split = "train"
elif args.dataset_path in NextEditPredictionDataset.SUPPORTED_DATASET_PATHS: # noqa: E501
dataset_class = NextEditPredictionDataset
args.hf_split = "train"
elif args.dataset_path in ASRDataset.SUPPORTED_DATASET_PATHS:
dataset_class = ASRDataset
args.hf_split = "train"
elif args.dataset_path in MLPerfDataset.SUPPORTED_DATASET_PATHS:
dataset_class = MLPerfDataset
args.hf_split = "train"
else:
supported_datasets = set([
dataset_name for cls in HuggingFaceDataset.__subclasses__()
for dataset_name in cls.SUPPORTED_DATASET_PATHS
])
raise ValueError(
f"Unsupported dataset path: {args.dataset_path}. "
"Huggingface dataset only supports dataset_path"
f" from one of following: {supported_datasets}. "
"Please consider contributing if you would "
"like to add support for additional dataset formats.")
if dataset_class.IS_MULTIMODAL and args.endpoint_type not in [
"openai-chat",
"openai-audio",
]:
# multi-modal benchmark is only available on OpenAI Chat
# endpoint-type.
raise ValueError(
"Multi-modal content is only supported on 'openai-chat' and "
"'openai-audio' endpoint-type.")
input_requests = dataset_class(
dataset_path=args.dataset_path,
dataset_subset=args.hf_subset,
dataset_split=args.hf_split,
random_seed=args.seed,
no_stream=args.no_stream,
).sample(
num_requests=args.num_prompts,
tokenizer=tokenizer,
output_len=args.hf_output_len,
request_id_prefix=args.request_id_prefix,
)
else:
# For datasets that follow a similar structure, use a mapping.
dataset_mapping = {
"sharegpt":
lambda: ShareGPTDataset(random_seed=args.seed,
dataset_path=args.dataset_path).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
output_len=args.sharegpt_output_len,
request_id_prefix=args.request_id_prefix,
),
"burstgpt":
lambda: BurstGPTDataset(random_seed=args.seed,
dataset_path=args.dataset_path).
sample(tokenizer=tokenizer, num_requests=args.num_prompts,
request_id_prefix=args.request_id_prefix,),
"random":
lambda: RandomDataset(random_seed=args.seed,
dataset_path=args.dataset_path).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
prefix_len=args.random_prefix_len,
input_len=args.random_input_len,
output_len=args.random_output_len,
range_ratio=args.random_range_ratio,
request_id_prefix=args.request_id_prefix,
),
"random-mm":
lambda: RandomMultiModalDataset(
random_seed=args.seed, dataset_path=args.dataset_path
).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
prefix_len=args.random_prefix_len,
range_ratio=args.random_range_ratio,
input_len=args.random_input_len,
output_len=args.random_output_len,
base_items_per_request=args.random_mm_base_items_per_request,
limit_mm_per_prompt=args.random_mm_limit_mm_per_prompt,
num_mm_items_range_ratio=args.random_mm_num_mm_items_range_ratio,
bucket_config=args.random_mm_bucket_config,
request_id_prefix=args.request_id_prefix,
),
"prefix_repetition":
lambda: PrefixRepetitionRandomDataset(
random_seed=args.seed, dataset_path=args.dataset_path
).sample(
tokenizer=tokenizer,
num_requests=args.num_prompts,
prefix_len=args.prefix_repetition_prefix_len,
suffix_len=args.prefix_repetition_suffix_len,
num_prefixes=args.prefix_repetition_num_prefixes,
output_len=args.prefix_repetition_output_len,
request_id_prefix=args.request_id_prefix,
),
}
try:
# Enforce endpoint compatibility for multimodal datasets.
if args.dataset_name == "random-mm" and args.endpoint_type not in [
"openai-chat"]:
raise ValueError(
"Multi-modal content (images) is only supported on "
"'openai-chat' backend."
)
input_requests = dataset_mapping[args.dataset_name]()
except KeyError as err:
raise ValueError(f"Unknown dataset: {args.dataset_name}") from err
return input_requests
# -----------------------------------------------------------------------------
# Custom Dataset Implementation
# -----------------------------------------------------------------------------
class CustomDataset(BenchmarkDataset):
"""
Implements the Custom dataset. Loads data from a JSONL file and generates
sample requests based on conversation turns. E.g.,
```
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
```
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self) -> None:
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
# self.data will be a list of dictionaries
# e.g., [{"prompt": "What is the capital of India?"}, ...]
# This will be the standardized format which load_data()
# has to convert into depending on the filetype of dataset_path.
# sample() will assume this standardized format of self.data
self.data = []
# Load the JSONL file
if self.dataset_path.endswith(".jsonl"):
jsonl_data = pd.read_json(path_or_buf=self.dataset_path,
lines=True)
# check if the JSONL file has a 'prompt' column
if "prompt" not in jsonl_data.columns:
raise ValueError("JSONL file must contain a 'prompt' column.")
# Convert each row to a dictionary and append to self.data
# This will convert the DataFrame to a list of dictionaries
# where each dictionary corresponds to a row in the DataFrame.
# This is the standardized format we want for self.data
for _, row in jsonl_data.iterrows():
self.data.append(row.to_dict())
else:
raise NotImplementedError(
"Only JSONL format is supported for CustomDataset.")
random.seed(self.random_seed)
random.shuffle(self.data)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
lora_path: Optional[str] = None,
max_loras: Optional[int] = None,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
skip_chat_template: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
sampled_requests = []
for i, item in enumerate(self.data):
if len(sampled_requests) >= num_requests:
break
prompt = item["prompt"]
# apply template
if not skip_chat_template:
prompt = tokenizer.apply_chat_template(
[{
"role": "user",
"content": prompt
}],
add_generation_prompt=True,
tokenize=False,
)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
request_id=request_id_prefix + str(i),
))
self.maybe_oversample_requests(sampled_requests, num_requests,
request_id_prefix)
return sampled_requests
# -----------------------------------------------------------------------------
# Sonnet Dataset Implementation
# -----------------------------------------------------------------------------
@deprecated(
"SonnetDataset is deprecated and will be removed in a future version.",
)
class SonnetDataset(BenchmarkDataset):
"""
Simplified implementation of the Sonnet dataset. Loads poem lines from a
text file and generates sample requests. Default values here copied from
`benchmark_serving.py` for the sonnet dataset.
"""
DEFAULT_PREFIX_LEN = 200
DEFAULT_INPUT_LEN = 550
DEFAULT_OUTPUT_LEN = 150
def __init__(
self,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self) -> None:
if not self.dataset_path:
raise ValueError("dataset_path must be provided.")
with open(self.dataset_path, encoding="utf-8") as f:
self.data = f.readlines()
def sample(
self,
tokenizer,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
input_len: int = DEFAULT_INPUT_LEN,
output_len: int = DEFAULT_OUTPUT_LEN,
return_prompt_formatted: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
# Calculate average token length for a poem line.
tokenized_lines = [tokenizer(line).input_ids for line in self.data]
avg_len = sum(len(tokens)
for tokens in tokenized_lines) / len(tokenized_lines)
# Build the base prompt.
base_prompt = "Pick as many lines as you can from these poem lines:\n"
base_msg = [{"role": "user", "content": base_prompt}]
base_fmt = tokenizer.apply_chat_template(base_msg,
add_generation_prompt=True,
tokenize=False)
base_offset = len(tokenizer(base_fmt).input_ids)
if input_len <= base_offset:
raise ValueError(
f"'input_len' must be higher than the base prompt length "
f"({base_offset}).")
# Determine how many poem lines to use.
num_input_lines = round((input_len - base_offset) / avg_len)
num_prefix_lines = max(round((prefix_len - base_offset) / avg_len), 0)
prefix_lines = self.data[:num_prefix_lines]
samples = []
ind = 0
while len(samples) < num_requests:
extra_lines = random.choices(self.data,
k=num_input_lines - num_prefix_lines)
prompt = f"{base_prompt}{''.join(prefix_lines + extra_lines)}"
msg = [{"role": "user", "content": prompt}]
prompt_formatted = tokenizer.apply_chat_template(
msg, add_generation_prompt=True, tokenize=False)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
if prompt_len <= input_len:
samples.append(
SampleRequest(
prompt=prompt_formatted
if return_prompt_formatted else prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
request_id=request_id_prefix + str(ind),
))
ind += 1
return samples
# -----------------------------------------------------------------------------
# BurstGPT Dataset Implementation
# -----------------------------------------------------------------------------
class BurstGPTDataset(BenchmarkDataset):
"""
Implements the BurstGPT dataset. Loads data from a CSV file and generates
sample requests based on synthetic prompt generation. Only rows with Model
"GPT-4" and positive response tokens are used.
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
self.load_data()
def load_data(self, ):
if self.dataset_path is None:
raise ValueError("dataset_path must be provided for loading data.")
df = pd.read_csv(self.dataset_path)
# Filter to keep only GPT-4 rows.
gpt4_df = df[df["Model"] == "GPT-4"]
# Remove failed requests (where Response tokens is 0 or less).
gpt4_df = gpt4_df[gpt4_df["Response tokens"] > 0]
# Sample the desired number of rows.
self.data = gpt4_df
def _sample_loaded_data(self, num_requests: int) -> list:
if num_requests <= len(self.data):
data = self.data.sample(n=num_requests,
random_state=self.random_seed)
else:
data = self.data.sample(
n=num_requests,
random_state=self.random_seed,
replace=True,
)
# Convert the dataframe to a list of lists.
return data.values.tolist()
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
max_loras: Optional[int] = None,
lora_path: Optional[str] = None,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]:
samples = []
data = self._sample_loaded_data(num_requests=num_requests)
for i in range(num_requests):
input_len = int(data[i][2])
output_len = int(data[i][3])
lora_req, tokenizer = self.get_random_lora_request(
tokenizer=tokenizer, max_loras=max_loras, lora_path=lora_path)
vocab_size = tokenizer.vocab_size
# Generate a synthetic prompt: a list of token IDs computed as (i +
# j) modulo vocab_size.
token_ids = [(i + j) % vocab_size for j in range(input_len)]
prompt = tokenizer.decode(token_ids)
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=input_len,
expected_output_len=output_len,
lora_request=lora_req,
request_id=request_id_prefix + str(i),
))
return samples
# -----------------------------------------------------------------------------
# HuggingFace Dataset Base Implementation
# -----------------------------------------------------------------------------
class HuggingFaceDataset(BenchmarkDataset):
"""Base class for datasets hosted on HuggingFace."""
SUPPORTED_DATASET_PATHS: Union[set[str], dict[str, Callable]] = set()
def __init__(
self,
dataset_path: str,
dataset_split: str,
no_stream: bool = False,
dataset_subset: Optional[str] = None,
**kwargs,
) -> None:
super().__init__(dataset_path=dataset_path, **kwargs)
self.dataset_split = dataset_split
self.dataset_subset = dataset_subset
self.load_stream = not no_stream
self.load_data()
def load_data(self) -> None:
"""Load data from HuggingFace datasets."""
self.data = load_dataset(
self.dataset_path,
name=self.dataset_subset,
split=self.dataset_split,
streaming=self.load_stream,
)
self.data = self.data.shuffle(seed=self.random_seed)
# -----------------------------------------------------------------------------
# Conversation Dataset Implementation
# -----------------------------------------------------------------------------
class ConversationDataset(HuggingFaceDataset):
"""Dataset for conversation data with multimodal support."""
SUPPORTED_DATASET_PATHS = {
'lmms-lab/LLaVA-OneVision-Data', 'Aeala/ShareGPT_Vicuna_unfiltered'
}
IS_MULTIMODAL = True
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs) -> list:
# Filter examples with at least 2 conversations
filtered_data = self.data.filter(
lambda x: len(x["conversations"]) >= 2)
sampled_requests = []
ind = 0
dynamic_output = output_len is None
for item in filtered_data:
if len(sampled_requests) >= num_requests:
break
conv = item["conversations"]
prompt, completion = conv[0]["value"], conv[1]["value"]
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(
prompt_len, completion_len):
continue
mm_content = process_image(
item["image"]) if "image" in item else None
if enable_multimodal_chat:
# Note: when chat is enabled the request prompt_len is no longer
# accurate and we will be using request output to count the
# actual prompt len and output len
prompt = self.apply_multimodal_chat_transformation(
prompt, mm_content)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
request_id=request_id_prefix + str(ind),
))
ind += 1
self.maybe_oversample_requests(sampled_requests, num_requests,
request_id_prefix)
return sampled_requests
# -----------------------------------------------------------------------------
# Vision Arena Dataset Implementation
# -----------------------------------------------------------------------------
class VisionArenaDataset(HuggingFaceDataset):
"""
Vision Arena Dataset.
"""
DEFAULT_OUTPUT_LEN = 128
SUPPORTED_DATASET_PATHS = {
"lmarena-ai/VisionArena-Chat":
lambda x: x["conversation"][0][0]["content"],
"lmarena-ai/vision-arena-bench-v0.1":
lambda x: x["turns"][0][0]["content"]
}
IS_MULTIMODAL = True
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
sampled_requests = []
for i, item in enumerate(self.data):
if len(sampled_requests) >= num_requests:
break
parser_fn = self.SUPPORTED_DATASET_PATHS.get(self.dataset_path)
if parser_fn is None:
raise ValueError(
f"Unsupported dataset path: {self.dataset_path}")
prompt = parser_fn(item)
mm_content = process_image(item["images"][0])
prompt_len = len(tokenizer(prompt).input_ids)
if enable_multimodal_chat:
# Note: when chat is enabled the request prompt_len is no longer
# accurate and we will be using request output to count the
# actual prompt len
prompt = self.apply_multimodal_chat_transformation(
prompt, mm_content)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
request_id=request_id_prefix + str(i),
))
self.maybe_oversample_requests(sampled_requests, num_requests,
request_id_prefix)
return sampled_requests
# -----------------------------------------------------------------------------
# Instruct Coder Dataset Implementation
# -----------------------------------------------------------------------------
class InstructCoderDataset(HuggingFaceDataset):
"""
InstructCoder Dataset.
https://huggingface.co/datasets/likaixin/InstructCoder
InstructCoder is the dataset designed for general code editing. It consists
of 114,239 instruction-input-output triplets, and covers multiple distinct
code editing scenario.
"""
DEFAULT_OUTPUT_LEN = 200 # this is the average default output length
SUPPORTED_DATASET_PATHS = {
"likaixin/InstructCoder",
}
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
sampled_requests = []
for i, item in enumerate(self.data):
if len(sampled_requests) >= num_requests:
break
prompt = (
f"{item['input']}\n\n{item['instruction']} Just output "
"the code, do not include any explanation."
)
# apply template
prompt = tokenizer.apply_chat_template(
[{
"role": "user",
"content": prompt
}],
add_generation_prompt=True,
tokenize=False,
)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
request_id=request_id_prefix + str(i),
))
self.maybe_oversample_requests(sampled_requests, num_requests,
request_id_prefix)
return sampled_requests
# -----------------------------------------------------------------------------
# MT-Bench Dataset Implementation
# -----------------------------------------------------------------------------
class MTBenchDataset(HuggingFaceDataset):
"""
MT-Bench Dataset.
https://huggingface.co/datasets/philschmid/mt-bench
We create a single turn dataset for MT-Bench.
This is similar to Spec decoding benchmark setup in vLLM
https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
""" # noqa: E501
DEFAULT_OUTPUT_LEN = 256 # avg len used in SD bench in vLLM
SUPPORTED_DATASET_PATHS = {
"philschmid/mt-bench",
}
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
request_id_prefix: str = "",
**kwargs,
) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
sampled_requests = []
for i, item in enumerate(self.data):
if len(sampled_requests) >= num_requests:
break
prompt = item["turns"][0]
# apply template
prompt = tokenizer.apply_chat_template(
[{
"role": "user",
"content": prompt
}],
add_generation_prompt=True,
tokenize=False,
)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
request_id=request_id_prefix + str(i),
))
self.maybe_oversample_requests(sampled_requests, num_requests,
request_id_prefix)
return sampled_requests
# -----------------------------------------------------------------------------
# AIMO Dataset Implementation
# -----------------------------------------------------------------------------
class AIMODataset(HuggingFaceDataset):
"""
Dataset class for processing a AIMO dataset with reasoning questions.
"""
SUPPORTED_DATASET_PATHS = {
"AI-MO/aimo-validation-aime", "AI-MO/NuminaMath-1.5",
"AI-MO/NuminaMath-CoT"
}
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs) -> list:
sampled_requests = []
ind = 0
dynamic_output = output_len is None
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt, completion = item['problem'], item["solution"]
prompt_ids = tokenizer(prompt).input_ids
completion_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_ids)
completion_len = len(completion_ids)
output_len = completion_len if dynamic_output else output_len
assert isinstance(output_len, int) and output_len > 0
if dynamic_output and not is_valid_sequence(prompt_len,
completion_len,
max_prompt_len=2048,
max_total_len=32000):
continue
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=None,
request_id=request_id_prefix + str(ind),
))
ind += 1
self.maybe_oversample_requests(sampled_requests, num_requests,
request_id_prefix)
return sampled_requests
# -----------------------------------------------------------------------------
# Next Edit Prediction Dataset Implementation
# -----------------------------------------------------------------------------
zeta_prompt = """### Instruction:
You are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location.
### User Edits:
{}
### User Excerpt:
{}
### Response:
""" # noqa: E501
def _format_zeta_prompt(
sample: dict,
original_start_marker: str = "<|editable_region_start|>") -> dict:
"""Format the zeta prompt for the Next Edit Prediction (NEP) dataset.
This function formats examples from the NEP dataset
into prompts and expected outputs. It could be
further extended to support more NEP datasets.
Args:
sample: The dataset sample containing events,
inputs, and outputs.
original_start_marker: The marker indicating the
start of the editable region. Defaults to
"<|editable_region_start|>".
Returns:
A dictionary with the formatted prompts and expected outputs.
"""
events = sample["events"]
input = sample["input"]
output = sample["output"]
prompt = zeta_prompt.format(events, input)
# following the original implementation, extract the focused region
# from the raw output
output_start_index = output.find(original_start_marker)
output_focused_region = output[output_start_index:]
expected_output = output_focused_region
return {"prompt": prompt, "expected_output": expected_output}
class NextEditPredictionDataset(HuggingFaceDataset):
"""
Dataset class for processing a Next Edit Prediction dataset.
"""
SUPPORTED_DATASET_PATHS = {
"zed-industries/zeta",
}
MAPPING_PROMPT_FUNCS = {
"zed-industries/zeta": _format_zeta_prompt,
}
def sample(self, tokenizer: PreTrainedTokenizerBase, num_requests: int,
request_id_prefix: str = "",
**kwargs):
formatting_prompt_func = self.MAPPING_PROMPT_FUNCS.get(
self.dataset_path)
if formatting_prompt_func is None:
raise ValueError(f"Unsupported dataset path: {self.dataset_path}")
samples = []
for i, sample in enumerate(self.data):
sample = formatting_prompt_func(sample)
samples.append(
SampleRequest(
prompt=sample["prompt"],
prompt_len=len(tokenizer(sample["prompt"]).input_ids),
expected_output_len=len(
tokenizer(sample["expected_output"]).input_ids),
request_id=request_id_prefix + str(i),
))
if len(samples) >= num_requests:
break
self.maybe_oversample_requests(samples, num_requests, request_id_prefix)
return samples
# -----------------------------------------------------------------------------
# ASR Dataset Implementation
# -----------------------------------------------------------------------------
class ASRDataset(HuggingFaceDataset):
"""
Dataset class for processing a ASR dataset for transcription.
Tested on the following set:
+----------------+----------------------------------------+--------------------------+-----------------------------+
| Dataset | Domain | Speaking Style | hf-subset |
+----------------+----------------------------------------+--------------------------+-----------------------------+
| TED-LIUM | TED talks | Oratory | release1, release2, release3|
| | | | release3-speaker-adaptation |
| VoxPopuli | European Parliament | Oratory | en, de, it, fr, ... |
| LibriSpeech | Audiobook | Narrated | "LIUM/tedlium" |
| GigaSpeech | Audiobook, podcast, YouTube | Narrated, spontaneous | xs, s, m, l, xl, dev, test |
| SPGISpeech | Financial meetings | Oratory, spontaneous | S, M, L, dev, test |
| AMI | Meetings | Spontaneous | ihm, sdm |
+----------------+----------------------------------------+--------------------------+-----------------------------+
""" # noqa: E501
SUPPORTED_DATASET_PATHS = {
"openslr/librispeech_asr",
"facebook/voxpopuli",
"LIUM/tedlium",
"edinburghcstr/ami",
"speechcolab/gigaspeech",
"kensho/spgispeech",
}
DEFAULT_OUTPUT_LEN = 128
IS_MULTIMODAL = True
# TODO Whisper-specific. Abstract interface when more models are supported.
TRANSCRIPTION_PREAMBLE = (
"<|startoftranscript|><|en|><|transcribe|><|notimestamps|>")
skip_long_audios: bool = True
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs,
) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
prompt = ASRDataset.TRANSCRIPTION_PREAMBLE
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests = []
ind = 0
skipped = 0
for item in self.data:
if len(sampled_requests) >= num_requests:
break
audio = item["audio"]
y, sr = audio["array"], audio["sampling_rate"]
duration_s = librosa.get_duration(y=y, sr=sr)
# Whisper max supported duration
if self.skip_long_audios and duration_s > 30:
skipped += 1
continue
mm_content = {"audio": (y, sr)}
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
multi_modal_data=mm_content,
request_id=request_id_prefix + str(ind),
))
ind += 1
if skipped:
logger.warning(
"%d samples discarded from dataset due to"
" their length being greater than"
" what Whisper supports.",
skipped,
)
self.maybe_oversample_requests(sampled_requests, num_requests,
request_id_prefix)
return sampled_requests
# -----------------------------------------------------------------------------
# MLPerf Dataset Implementation
# -----------------------------------------------------------------------------
class MLPerfDataset(HuggingFaceDataset):
"""
MLPerf Inference Dataset.
Dataset on HF:
https://huggingface.co/datasets/mgoin/mlperf-inference-llama2-data
https://huggingface.co/datasets/mgoin/mlperf-inference-llama3.1-data
Each record contains:
- "system_prompt": system role instruction.
- "question": user question.
- "output": reference answer.
We combine the system prompt and question into a chat-formatted prompt
(using the tokenizer's chat template) and set the expected output length to
the tokenized length of the provided reference answer.
"""
SUPPORTED_DATASET_PATHS = {
"mgoin/mlperf-inference-llama2-data",
"mgoin/mlperf-inference-llama3.1-data",
}
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]:
# Force dynamic output length based on reference completion.
dynamic_output = output_len is None
sampled_requests: list[SampleRequest] = []
ind = 0
for item in self.data:
if len(sampled_requests) >= num_requests:
break
system_prompt = item["system_prompt"]
question = item["question"]
reference_answer = item["output"]
# Build chat-style prompt using tokenizer template, if available.
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": question},
]
prompt_formatted = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=False
)
prompt_len = len(tokenizer(prompt_formatted).input_ids)
# Determine output length from reference answer tokens.
ref_out_len = len(
tokenizer(reference_answer, add_special_tokens=False).input_ids
)
expected_output_len = ref_out_len if dynamic_output else output_len
# Validate sequence lengths.
if not is_valid_sequence(prompt_len, expected_output_len):
continue
sampled_requests.append(
SampleRequest(
prompt=prompt_formatted,
prompt_len=prompt_len,
expected_output_len=expected_output_len,
request_id=request_id_prefix + str(ind),
)
)
ind += 1
self.maybe_oversample_requests(sampled_requests, num_requests,
request_id_prefix)
return sampled_requests
# -----------------------------------------------------------------------------
# Prefix Repetition Dataset Implementation
# -----------------------------------------------------------------------------
class PrefixRepetitionRandomDataset(BenchmarkDataset):
# Default values copied from benchmark_serving.py for the repeated prefix
# dataset.
DEFAULT_PREFIX_LEN = 256
DEFAULT_SUFFIX_LEN = 256
DEFAULT_NUM_PREFIXES = 10
DEFAULT_OUTPUT_LEN = 128
def __init__(
self,
**kwargs,
) -> None:
super().__init__(**kwargs)
random.seed(self.random_seed)
np.random.seed(self.random_seed)
def sample(
self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
prefix_len: int = DEFAULT_PREFIX_LEN,
suffix_len: int = DEFAULT_SUFFIX_LEN,
num_prefixes: int = DEFAULT_NUM_PREFIXES,
output_len: int = DEFAULT_OUTPUT_LEN,
request_id_prefix: str = "",
**kwargs,
) -> list[SampleRequest]:
vocab_size = tokenizer.vocab_size
prompts_per_prefix = num_requests // num_prefixes
if prompts_per_prefix == 0:
raise ValueError(
f"num_requests ({num_requests}) must be greater than or equal "
f"to num_prefixes ({num_prefixes})"
)
def _generate_exact_length_tokens(target_length: int) -> list[int]:
"""Generate tokens that decode and re-encode to exactly
target_length."""
# Generate random tokens
tokens = np.random.randint(
0, vocab_size, size=target_length).tolist()
text = tokenizer.decode(tokens)
re_encoded = tokenizer.encode(text, add_special_tokens=False)
if len(re_encoded) == target_length:
return re_encoded
elif len(re_encoded) < target_length:
# Recursively generate additional consistent tokens
needed = target_length - len(re_encoded)
extra_tokens = _generate_exact_length_tokens(needed)
return re_encoded + extra_tokens
else:
# Truncate to target length
return re_encoded[:target_length]
requests = []
for _ in range(num_prefixes):
prefix_tokens = _generate_exact_length_tokens(prefix_len)
for _ in range(prompts_per_prefix):
suffix_tokens = _generate_exact_length_tokens(suffix_len)
combined_tokens = prefix_tokens + suffix_tokens
prompt = tokenizer.decode(combined_tokens)
prompt_len = len(combined_tokens)
requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
)
)
random.shuffle(requests)
return requests