Files
vllm-dev/vllm/worker/neuron_worker.py
Woosuk Kwon 71683ca6f6 [V0 Deprecation] Remove multi-step scheduling (#22138)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-08-12 20:18:39 -07:00

190 lines
7.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""A Neuron worker class."""
import os
from typing import List, Optional, Set, Tuple
import torch.distributed
from vllm.config import VllmConfig
from vllm.distributed import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.model_executor import set_random_seed
from vllm.platforms import current_platform
from vllm.platforms.neuron import NeuronFramework
from vllm.sequence import ExecuteModelRequest
from vllm.worker.neuron_model_runner import NeuronModelRunner
from vllm.worker.worker_base import (LocalOrDistributedWorkerBase, WorkerBase,
WorkerInput)
logger = init_logger(__name__)
class NeuronWorker(LocalOrDistributedWorkerBase):
"""A worker class that executes the model on a group of neuron cores.
"""
model_runner: NeuronModelRunner
def __init__(self,
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False) -> None:
WorkerBase.__init__(self, vllm_config=vllm_config)
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
self.is_driver_worker = is_driver_worker
self.lora_config = vllm_config.lora_config
if self.model_config.trust_remote_code:
# note: lazy import to avoid importing torch before initializing
from vllm.utils import init_cached_hf_modules
init_cached_hf_modules()
neuron_framework = current_platform.get_neuron_framework_to_use()
if neuron_framework == NeuronFramework.TRANSFORMERS_NEURONX:
self.model_runner = self.get_tnx_model_runner(vllm_config)
elif neuron_framework == NeuronFramework.NEURONX_DISTRIBUTED_INFERENCE:
self.model_runner = self.get_neuronx_distributed_model_runner(
vllm_config)
else:
raise NotImplementedError(
"Specified framework" +
f" {os.environ.get('VLLM_NEURON_FRAMEWORK')}" +
" is either not installed or not supported." +
" Supported frameworks: " +
"[transformers-neuronx, neuronx-distributed-inference]")
def get_tnx_model_runner(self, vllm_config):
assert (self.lora_config
is None), ("LoRA is not supported for TransformersNeuronX "
"framework.")
if self.speculative_config is not None:
raise NotImplementedError(
"Speculative decoding is not supported for TransformersNeuronX"
)
return NeuronModelRunner(vllm_config=vllm_config)
def get_neuronx_distributed_model_runner(self, vllm_config):
from vllm.worker.neuronx_distributed_model_runner import (
NeuronxDistributedModelRunner)
if self.speculative_config is not None:
assert (self.lora_config is None), (
"LoRA is not supported for Speculative Decoding")
raise NotImplementedError(
"Speculative decoding is not supported for NeuronxDistributed")
return NeuronxDistributedModelRunner(vllm_config=vllm_config)
def init_device(self) -> None:
self.init_distributed_environment()
# Set random seed.
set_random_seed(self.model_config.seed)
def load_model(self):
self.model_runner.load_model()
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available KV blocks.
Swapping is not yet supported, so always return num_cpu_blocks=0.
We configure num_gpu_blocks to be equal to max_num_seqs.
"""
# Set the number of GPU blocks to be the same as the maximum number of
# sequences that can be processed in a single batch. This is equivalent
# to schedule without PagedAttention.
num_gpu_blocks = self.scheduler_config.max_num_seqs + 1
# Swap not yet supported with Neuron backend.
num_cpu_blocks = 0
return num_gpu_blocks, num_cpu_blocks
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Initialize the KV cache.
"""
# Different values are not tested.
assert num_cpu_blocks == 0
assert num_gpu_blocks == self.scheduler_config.max_num_seqs + 1
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = num_cpu_blocks
@property
def do_metadata_broadcast(self) -> bool:
return False
@property
def kv_cache(self) -> Optional[List[List[torch.Tensor]]]:
return None
@torch.inference_mode()
def prepare_worker_input(
self, execute_model_req: ExecuteModelRequest) -> WorkerInput:
return WorkerInput(num_seq_groups=len(
execute_model_req.seq_group_metadata_list), )
def execute_worker(self, worker_input: WorkerInput) -> None:
pass
def get_cache_block_size_bytes(self) -> int:
"""Determine the size in bytes of a cache block.
This is required for speculative decoding; it is not yet implemented.
"""
raise NotImplementedError
def init_distributed_environment(self):
"""Neuron uses transformers-neuronx for tensor parallelism.
vLLM still needs the environment initialized when TP/PP > 1
"""
init_distributed_environment(
world_size=1,
rank=self.rank,
local_rank=self.local_rank,
distributed_init_method=self.distributed_init_method,
backend=current_platform.dist_backend,
)
ensure_model_parallel_initialized(
1,
1,
)
def add_lora(self, lora_request: LoRARequest) -> bool:
if current_platform.use_transformers_neuronx():
raise NotImplementedError(
f"{type(self)} does not support LoRA with Neuron Framework "
f"Transformers NeuronX")
return self.model_runner.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
if current_platform.use_transformers_neuronx():
raise NotImplementedError(
f"{type(self)} does not support LoRA with Neuron Framework "
f"Transformers NeuronX")
return self.model_runner.remove_lora(lora_id)
def pin_lora(self, lora_id: int) -> bool:
if current_platform.use_transformers_neuronx():
raise NotImplementedError(
f"{type(self)} does not support LoRA with Neuron Framework "
f"Transformers NeuronX")
return self.model_runner.pin_lora(lora_id)
def list_loras(self) -> Set[int]:
if current_platform.use_transformers_neuronx():
raise NotImplementedError(
f"{type(self)} does not support LoRA with Neuron Framework "
f"Transformers NeuronX")
return self.model_runner.list_loras()