Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu> Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
190 lines
7.1 KiB
Python
190 lines
7.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""A Neuron worker class."""
|
|
import os
|
|
from typing import List, Optional, Set, Tuple
|
|
|
|
import torch.distributed
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import (ensure_model_parallel_initialized,
|
|
init_distributed_environment)
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.model_executor import set_random_seed
|
|
from vllm.platforms import current_platform
|
|
from vllm.platforms.neuron import NeuronFramework
|
|
from vllm.sequence import ExecuteModelRequest
|
|
from vllm.worker.neuron_model_runner import NeuronModelRunner
|
|
from vllm.worker.worker_base import (LocalOrDistributedWorkerBase, WorkerBase,
|
|
WorkerInput)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class NeuronWorker(LocalOrDistributedWorkerBase):
|
|
"""A worker class that executes the model on a group of neuron cores.
|
|
"""
|
|
|
|
model_runner: NeuronModelRunner
|
|
|
|
def __init__(self,
|
|
vllm_config: VllmConfig,
|
|
local_rank: int,
|
|
rank: int,
|
|
distributed_init_method: str,
|
|
is_driver_worker: bool = False) -> None:
|
|
WorkerBase.__init__(self, vllm_config=vllm_config)
|
|
self.local_rank = local_rank
|
|
self.rank = rank
|
|
self.distributed_init_method = distributed_init_method
|
|
self.is_driver_worker = is_driver_worker
|
|
self.lora_config = vllm_config.lora_config
|
|
|
|
if self.model_config.trust_remote_code:
|
|
# note: lazy import to avoid importing torch before initializing
|
|
from vllm.utils import init_cached_hf_modules
|
|
init_cached_hf_modules()
|
|
|
|
neuron_framework = current_platform.get_neuron_framework_to_use()
|
|
if neuron_framework == NeuronFramework.TRANSFORMERS_NEURONX:
|
|
self.model_runner = self.get_tnx_model_runner(vllm_config)
|
|
elif neuron_framework == NeuronFramework.NEURONX_DISTRIBUTED_INFERENCE:
|
|
self.model_runner = self.get_neuronx_distributed_model_runner(
|
|
vllm_config)
|
|
else:
|
|
raise NotImplementedError(
|
|
"Specified framework" +
|
|
f" {os.environ.get('VLLM_NEURON_FRAMEWORK')}" +
|
|
" is either not installed or not supported." +
|
|
" Supported frameworks: " +
|
|
"[transformers-neuronx, neuronx-distributed-inference]")
|
|
|
|
def get_tnx_model_runner(self, vllm_config):
|
|
assert (self.lora_config
|
|
is None), ("LoRA is not supported for TransformersNeuronX "
|
|
"framework.")
|
|
if self.speculative_config is not None:
|
|
raise NotImplementedError(
|
|
"Speculative decoding is not supported for TransformersNeuronX"
|
|
)
|
|
return NeuronModelRunner(vllm_config=vllm_config)
|
|
|
|
def get_neuronx_distributed_model_runner(self, vllm_config):
|
|
from vllm.worker.neuronx_distributed_model_runner import (
|
|
NeuronxDistributedModelRunner)
|
|
if self.speculative_config is not None:
|
|
assert (self.lora_config is None), (
|
|
"LoRA is not supported for Speculative Decoding")
|
|
raise NotImplementedError(
|
|
"Speculative decoding is not supported for NeuronxDistributed")
|
|
return NeuronxDistributedModelRunner(vllm_config=vllm_config)
|
|
|
|
def init_device(self) -> None:
|
|
self.init_distributed_environment()
|
|
|
|
# Set random seed.
|
|
set_random_seed(self.model_config.seed)
|
|
|
|
def load_model(self):
|
|
self.model_runner.load_model()
|
|
|
|
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
|
"""Determine the number of available KV blocks.
|
|
|
|
Swapping is not yet supported, so always return num_cpu_blocks=0.
|
|
|
|
We configure num_gpu_blocks to be equal to max_num_seqs.
|
|
"""
|
|
# Set the number of GPU blocks to be the same as the maximum number of
|
|
# sequences that can be processed in a single batch. This is equivalent
|
|
# to schedule without PagedAttention.
|
|
num_gpu_blocks = self.scheduler_config.max_num_seqs + 1
|
|
|
|
# Swap not yet supported with Neuron backend.
|
|
num_cpu_blocks = 0
|
|
|
|
return num_gpu_blocks, num_cpu_blocks
|
|
|
|
def initialize_cache(self, num_gpu_blocks: int,
|
|
num_cpu_blocks: int) -> None:
|
|
"""Initialize the KV cache.
|
|
"""
|
|
|
|
# Different values are not tested.
|
|
assert num_cpu_blocks == 0
|
|
assert num_gpu_blocks == self.scheduler_config.max_num_seqs + 1
|
|
|
|
self.cache_config.num_gpu_blocks = num_gpu_blocks
|
|
self.cache_config.num_cpu_blocks = num_cpu_blocks
|
|
|
|
@property
|
|
def do_metadata_broadcast(self) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def kv_cache(self) -> Optional[List[List[torch.Tensor]]]:
|
|
return None
|
|
|
|
@torch.inference_mode()
|
|
def prepare_worker_input(
|
|
self, execute_model_req: ExecuteModelRequest) -> WorkerInput:
|
|
return WorkerInput(num_seq_groups=len(
|
|
execute_model_req.seq_group_metadata_list), )
|
|
|
|
def execute_worker(self, worker_input: WorkerInput) -> None:
|
|
pass
|
|
|
|
def get_cache_block_size_bytes(self) -> int:
|
|
"""Determine the size in bytes of a cache block.
|
|
|
|
This is required for speculative decoding; it is not yet implemented.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def init_distributed_environment(self):
|
|
"""Neuron uses transformers-neuronx for tensor parallelism.
|
|
|
|
vLLM still needs the environment initialized when TP/PP > 1
|
|
"""
|
|
init_distributed_environment(
|
|
world_size=1,
|
|
rank=self.rank,
|
|
local_rank=self.local_rank,
|
|
distributed_init_method=self.distributed_init_method,
|
|
backend=current_platform.dist_backend,
|
|
)
|
|
|
|
ensure_model_parallel_initialized(
|
|
1,
|
|
1,
|
|
)
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
if current_platform.use_transformers_neuronx():
|
|
raise NotImplementedError(
|
|
f"{type(self)} does not support LoRA with Neuron Framework "
|
|
f"Transformers NeuronX")
|
|
return self.model_runner.add_lora(lora_request)
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
if current_platform.use_transformers_neuronx():
|
|
raise NotImplementedError(
|
|
f"{type(self)} does not support LoRA with Neuron Framework "
|
|
f"Transformers NeuronX")
|
|
return self.model_runner.remove_lora(lora_id)
|
|
|
|
def pin_lora(self, lora_id: int) -> bool:
|
|
if current_platform.use_transformers_neuronx():
|
|
raise NotImplementedError(
|
|
f"{type(self)} does not support LoRA with Neuron Framework "
|
|
f"Transformers NeuronX")
|
|
return self.model_runner.pin_lora(lora_id)
|
|
|
|
def list_loras(self) -> Set[int]:
|
|
if current_platform.use_transformers_neuronx():
|
|
raise NotImplementedError(
|
|
f"{type(self)} does not support LoRA with Neuron Framework "
|
|
f"Transformers NeuronX")
|
|
return self.model_runner.list_loras()
|