Files
vllm-dev/vllm/pooling_params.py
Gabriel Marinho 5b8077b8ac Fix wrong truncate_prompt_tokens type hint (#22761)
Signed-off-by: Gabriel Marinho <gmarinho@ibm.com>
Signed-off-by: Gabriel Marinho <104592062+gmarinho2@users.noreply.github.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
2025-08-30 20:39:38 +00:00

184 lines
6.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from copy import deepcopy
from typing import TYPE_CHECKING, Annotated, Any, Optional
import msgspec
from vllm.sampling_params import RequestOutputKind
from vllm.tasks import PoolingTask
if TYPE_CHECKING:
from vllm.config import ModelConfig
class PoolingParams(
msgspec.Struct,
omit_defaults=True, # type: ignore[call-arg]
array_like=True): # type: ignore[call-arg]
"""API parameters for pooling models.
Attributes:
normalize: Whether to normalize the embeddings outputs.
dimensions: Reduce the dimensions of embeddings
if model support matryoshka representation.
activation: Whether to apply activation function to
the classification outputs.
softmax: Whether to apply softmax to the reward outputs.
"""
truncate_prompt_tokens: Optional[Annotated[int,
msgspec.Meta(ge=-1)]] = None
"""If set to -1, will use the truncation size supported by the model. If
set to an integer k, will use only the last k tokens from the prompt
(i.e., left truncation). If set to `None`, truncation is disabled."""
## for embeddings models
dimensions: Optional[int] = None
normalize: Optional[bool] = None
## for classification models
activation: Optional[bool] = None
## for reward models
softmax: Optional[bool] = None
step_tag_id: Optional[int] = None
returned_token_ids: Optional[list[int]] = None
task: Optional[PoolingTask] = None
"""Internal use only."""
requires_token_ids: bool = False
"""Internal use only."""
extra_kwargs: Optional[dict[str, Any]] = None
"""Internal use only."""
output_kind: RequestOutputKind = RequestOutputKind.FINAL_ONLY
@property
def all_parameters(self) -> list[str]:
return [
"dimensions", "normalize", "activation", "softmax", "step_tag_id",
"returned_token_ids"
]
@property
def valid_parameters(self):
return {
"embed": ["dimensions", "normalize"],
"classify": ["activation"],
"score": ["activation"],
"encode": ["softmax", "step_tag_id", "returned_token_ids"],
}
def clone(self) -> "PoolingParams":
"""Returns a deep copy of the PoolingParams instance."""
return deepcopy(self)
def verify(self,
task: PoolingTask,
model_config: Optional["ModelConfig"] = None) -> None:
if self.task is None:
self.task = task
elif self.task != task:
msg = f"You cannot overwrite {self.task=!r} with {task=!r}!"
raise ValueError(msg)
# NOTE: Task validation needs to done against the model instance,
# which is not available in model config. So, it's not included
# in this method
self._merge_default_parameters(model_config)
self._set_default_parameters(model_config)
self._verify_valid_parameters()
def _merge_default_parameters(self,
model_config: Optional["ModelConfig"] = None
) -> None:
if model_config is None:
return
pooler_config = model_config.pooler_config
if pooler_config is None:
return
assert self.task is not None, "task must be set"
valid_parameters = self.valid_parameters[self.task]
for k in valid_parameters:
if getattr(pooler_config, k, None) is None:
continue
if getattr(self, k, None) is None:
setattr(self, k, getattr(pooler_config, k))
def _set_default_parameters(self, model_config: Optional["ModelConfig"]):
if self.task == "embed":
if self.normalize is None:
self.normalize = True
if self.dimensions is not None and model_config is not None:
if not model_config.is_matryoshka:
raise ValueError(
f'Model "{model_config.served_model_name}" does not '
f'support matryoshka representation, '
f'changing output dimensions will lead to poor results.'
)
mds = model_config.matryoshka_dimensions
if mds is not None:
if self.dimensions not in mds:
raise ValueError(
f'Model "{model_config.served_model_name}" '
f'only supports {str(mds)} matryoshka dimensions, '
f'use other output dimensions will '
f'lead to poor results.')
elif self.dimensions < 1:
raise ValueError("Dimensions must be greater than 0")
elif self.task in ["classify", "score"]:
if self.activation is None:
self.activation = True
elif self.task == "encode":
if self.softmax is None:
self.softmax = True
else:
raise ValueError(f"Unknown pooling task: {self.task}")
def _verify_valid_parameters(self):
assert self.task is not None, "task must be set"
valid_parameters = self.valid_parameters[self.task]
invalid_parameters = []
for k in self.all_parameters:
if k in valid_parameters:
continue
if getattr(self, k, None) is not None:
invalid_parameters.append(k)
if invalid_parameters:
raise ValueError(
f"Task {self.task} only supports {valid_parameters} "
f"parameters, does not support "
f"{invalid_parameters} parameters")
def __repr__(self) -> str:
return (f"PoolingParams("
f"task={self.task}, "
f"normalize={self.normalize}, "
f"dimensions={self.dimensions}, "
f"activation={self.activation}, "
f"softmax={self.softmax}, "
f"step_tag_id={self.step_tag_id}, "
f"returned_token_ids={self.returned_token_ids}, "
f"requires_token_ids={self.requires_token_ids}, "
f"extra_kwargs={self.extra_kwargs})")
def __post_init__(self) -> None:
assert self.output_kind == RequestOutputKind.FINAL_ONLY,\
"For pooling output_kind has to be FINAL_ONLY"