Signed-off-by: Gabriel Marinho <gmarinho@ibm.com> Signed-off-by: Gabriel Marinho <104592062+gmarinho2@users.noreply.github.com> Signed-off-by: Max de Bayser <mbayser@br.ibm.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com> Co-authored-by: Max de Bayser <mbayser@br.ibm.com>
184 lines
6.5 KiB
Python
184 lines
6.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from copy import deepcopy
|
|
from typing import TYPE_CHECKING, Annotated, Any, Optional
|
|
|
|
import msgspec
|
|
|
|
from vllm.sampling_params import RequestOutputKind
|
|
from vllm.tasks import PoolingTask
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.config import ModelConfig
|
|
|
|
|
|
class PoolingParams(
|
|
msgspec.Struct,
|
|
omit_defaults=True, # type: ignore[call-arg]
|
|
array_like=True): # type: ignore[call-arg]
|
|
"""API parameters for pooling models.
|
|
|
|
Attributes:
|
|
normalize: Whether to normalize the embeddings outputs.
|
|
dimensions: Reduce the dimensions of embeddings
|
|
if model support matryoshka representation.
|
|
activation: Whether to apply activation function to
|
|
the classification outputs.
|
|
softmax: Whether to apply softmax to the reward outputs.
|
|
"""
|
|
truncate_prompt_tokens: Optional[Annotated[int,
|
|
msgspec.Meta(ge=-1)]] = None
|
|
"""If set to -1, will use the truncation size supported by the model. If
|
|
set to an integer k, will use only the last k tokens from the prompt
|
|
(i.e., left truncation). If set to `None`, truncation is disabled."""
|
|
|
|
## for embeddings models
|
|
dimensions: Optional[int] = None
|
|
normalize: Optional[bool] = None
|
|
|
|
## for classification models
|
|
activation: Optional[bool] = None
|
|
|
|
## for reward models
|
|
softmax: Optional[bool] = None
|
|
step_tag_id: Optional[int] = None
|
|
returned_token_ids: Optional[list[int]] = None
|
|
|
|
task: Optional[PoolingTask] = None
|
|
"""Internal use only."""
|
|
|
|
requires_token_ids: bool = False
|
|
"""Internal use only."""
|
|
|
|
extra_kwargs: Optional[dict[str, Any]] = None
|
|
"""Internal use only."""
|
|
|
|
output_kind: RequestOutputKind = RequestOutputKind.FINAL_ONLY
|
|
|
|
@property
|
|
def all_parameters(self) -> list[str]:
|
|
return [
|
|
"dimensions", "normalize", "activation", "softmax", "step_tag_id",
|
|
"returned_token_ids"
|
|
]
|
|
|
|
@property
|
|
def valid_parameters(self):
|
|
return {
|
|
"embed": ["dimensions", "normalize"],
|
|
"classify": ["activation"],
|
|
"score": ["activation"],
|
|
"encode": ["softmax", "step_tag_id", "returned_token_ids"],
|
|
}
|
|
|
|
def clone(self) -> "PoolingParams":
|
|
"""Returns a deep copy of the PoolingParams instance."""
|
|
return deepcopy(self)
|
|
|
|
def verify(self,
|
|
task: PoolingTask,
|
|
model_config: Optional["ModelConfig"] = None) -> None:
|
|
|
|
if self.task is None:
|
|
self.task = task
|
|
elif self.task != task:
|
|
msg = f"You cannot overwrite {self.task=!r} with {task=!r}!"
|
|
raise ValueError(msg)
|
|
|
|
# NOTE: Task validation needs to done against the model instance,
|
|
# which is not available in model config. So, it's not included
|
|
# in this method
|
|
|
|
self._merge_default_parameters(model_config)
|
|
self._set_default_parameters(model_config)
|
|
self._verify_valid_parameters()
|
|
|
|
def _merge_default_parameters(self,
|
|
model_config: Optional["ModelConfig"] = None
|
|
) -> None:
|
|
|
|
if model_config is None:
|
|
return
|
|
|
|
pooler_config = model_config.pooler_config
|
|
if pooler_config is None:
|
|
return
|
|
|
|
assert self.task is not None, "task must be set"
|
|
valid_parameters = self.valid_parameters[self.task]
|
|
|
|
for k in valid_parameters:
|
|
if getattr(pooler_config, k, None) is None:
|
|
continue
|
|
|
|
if getattr(self, k, None) is None:
|
|
setattr(self, k, getattr(pooler_config, k))
|
|
|
|
def _set_default_parameters(self, model_config: Optional["ModelConfig"]):
|
|
if self.task == "embed":
|
|
if self.normalize is None:
|
|
self.normalize = True
|
|
|
|
if self.dimensions is not None and model_config is not None:
|
|
if not model_config.is_matryoshka:
|
|
raise ValueError(
|
|
f'Model "{model_config.served_model_name}" does not '
|
|
f'support matryoshka representation, '
|
|
f'changing output dimensions will lead to poor results.'
|
|
)
|
|
|
|
mds = model_config.matryoshka_dimensions
|
|
if mds is not None:
|
|
if self.dimensions not in mds:
|
|
raise ValueError(
|
|
f'Model "{model_config.served_model_name}" '
|
|
f'only supports {str(mds)} matryoshka dimensions, '
|
|
f'use other output dimensions will '
|
|
f'lead to poor results.')
|
|
elif self.dimensions < 1:
|
|
raise ValueError("Dimensions must be greater than 0")
|
|
|
|
elif self.task in ["classify", "score"]:
|
|
if self.activation is None:
|
|
self.activation = True
|
|
|
|
elif self.task == "encode":
|
|
if self.softmax is None:
|
|
self.softmax = True
|
|
else:
|
|
raise ValueError(f"Unknown pooling task: {self.task}")
|
|
|
|
def _verify_valid_parameters(self):
|
|
assert self.task is not None, "task must be set"
|
|
valid_parameters = self.valid_parameters[self.task]
|
|
invalid_parameters = []
|
|
for k in self.all_parameters:
|
|
if k in valid_parameters:
|
|
continue
|
|
|
|
if getattr(self, k, None) is not None:
|
|
invalid_parameters.append(k)
|
|
|
|
if invalid_parameters:
|
|
raise ValueError(
|
|
f"Task {self.task} only supports {valid_parameters} "
|
|
f"parameters, does not support "
|
|
f"{invalid_parameters} parameters")
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"PoolingParams("
|
|
f"task={self.task}, "
|
|
f"normalize={self.normalize}, "
|
|
f"dimensions={self.dimensions}, "
|
|
f"activation={self.activation}, "
|
|
f"softmax={self.softmax}, "
|
|
f"step_tag_id={self.step_tag_id}, "
|
|
f"returned_token_ids={self.returned_token_ids}, "
|
|
f"requires_token_ids={self.requires_token_ids}, "
|
|
f"extra_kwargs={self.extra_kwargs})")
|
|
|
|
def __post_init__(self) -> None:
|
|
assert self.output_kind == RequestOutputKind.FINAL_ONLY,\
|
|
"For pooling output_kind has to be FINAL_ONLY"
|