Files
vllm-dev/vllm/beam_search.py
2025-08-22 10:38:46 -07:00

88 lines
2.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional, Union
from vllm.lora.request import LoRARequest
from vllm.sequence import Logprob
if TYPE_CHECKING:
from vllm.multimodal import MultiModalDataDict
@dataclass
class BeamSearchSequence:
"""A sequence for beam search.
It keeps track of the tokens and the log probability of the sequence.
The text field is optional and will only be filled when the sequence is
about to be returned to the user.
"""
# The tokens include the prompt.
tokens: list[int]
logprobs: list[dict[int, Logprob]]
lora_request: Optional[LoRARequest] = None
cum_logprob: float = 0.0
text: Optional[str] = None
finish_reason: Optional[str] = None
stop_reason: Union[int, str, None] = None
multi_modal_data: Optional["MultiModalDataDict"] = None
mm_processor_kwargs: Optional[dict[str, Any]] = None
@dataclass
class BeamSearchOutput:
"""The output of beam search.
It contains the list of the best beam search sequences.
The length of the list is equal to the beam width.
"""
sequences: list[BeamSearchSequence]
class BeamSearchInstance:
def __init__(
self,
prompt_tokens: list[int],
lora_request: Optional[LoRARequest] = None,
logprobs: Optional[list[dict[int, Logprob]]] = None,
**kwargs,
):
self.beams: list[BeamSearchSequence] = [
BeamSearchSequence(
tokens=prompt_tokens,
logprobs=[] if logprobs is None else list(logprobs),
lora_request=lora_request,
**kwargs,
)
]
self.completed: list[BeamSearchSequence] = []
def get_beam_search_score(
tokens: list[int],
cumulative_logprob: float,
eos_token_id: int,
length_penalty: float = 1.0,
) -> float:
"""Calculate the beam search score with length penalty.
Adapted from
https://github.com/huggingface/transformers/blob/ccb92be23def445f2afdea94c31286f84b89eb5b/src/transformers/generation/beam_search.py#L938
"""
seq_len = len(tokens)
if tokens[-1] == eos_token_id:
seq_len -= 1
return cumulative_logprob / (seq_len**length_penalty)
def create_sort_beams_key_function(eos_token_id: int, length_penalty: float):
def sort_beams_key(x: BeamSearchSequence) -> float:
return get_beam_search_score(x.tokens, x.cum_logprob, eos_token_id,
length_penalty)
return sort_beams_key